

eco-design Guidelines for Hydrogen Systems and Technologies

eGHOST Spring School (20-24 May 2024) eGHOST ECO-DESIGN GUIDELINES

Jure Gramc (University of Ljubljana)

This project has received funding from the Fuel Cells and Hydrogen 2 Joint Undertaking (now Clean Hydrogen Partnership) under Grant Agreement No 101007166. This Joint Undertaking receives support from the European Union's Horizon 2020 Research and Innovation programme, Hydrogen Europe and Hydrogen Europe Research.

Co-funded by the European Unic

eGHOST ECO-DESIGN GUIDELINES

TABLE OF CONTENT

1. INTRODUCTION

- 2. LCSA OF THE CASE-STUDY
- 3. ECO-DESIGN ACTIONS & PRODUCT CONCEPTS
- 4. LCSA OF THE PRODUCT CONCEPTS
- 5. ECO-DESIGN GUIDELINES
- 6. FINAL REMARKS

G eGHOST

ECO-DESIGN GUIDELINES DEFINITION METHODOLOGY

eco-design Guidelines for Hydrogen Systems and Technologies

LCSA OF THE CASE-STUDY

- PEMFC case-study definition
- SOEC case-study definition

LCSA PEMFC case-study

- PEMFC case-study E-LCA results
- PEMFC case-study LCC results
- PEMFC case-study S-LCA results

LIFE CYCLE SUSTAINABILITY ASSESSMENT

• E-LCA

- Scope: Manufacturing and EoL phase
- Functional unit: one 48 kWel PEMFC stack without BoM
- LCI provided by industry partner SYMBIO France
- LCIA: Environmental Footprint 3.1 (EF3.1)

• LCC

- Scope: Manufacturing phase
- 4 production rates (100, 1000, 10,000 and 50,000 stacks per year)
- Same inventory as for E-LCA

• S-LCA

- Scope: Manufacturing phase
- Same inventory as for E-LCA and LCC
- Economic data related to the production rate 10,000 stacks per year
- PSILCA database used

PEMFC CASE-STUDY DEFINITION – INVENTORIES

- Manufacturing phase provided by industry partner SYMBIO France
- EoL treatment defined based on current state processes of EoL technologies

Component		Material		Value	Unit	Sho	are
		Platinum nanoparticles	26	g	0.0	8%	
Pt/C		Carbon black		39	g	0.1	1%
lonomer		PFSA (Nafion®)		144	g	0.4	2%
/		Water ¹		490	g	/	
·		Alcohol ¹		220	g	/	
Subgasket		PEN/PET film with thermo ac	tive glue	1820	g	5.2	6%
Gas diffusion layer	r	Carbon cloths fibres		1249	g	3.6	1%
Bipolar plates		Stainless steel		21623	g	62.	52%
Component	Ma	erial	EoL process		V	alue	Unit
Compression bar	Chr	omium steel	Open loop r	ecycling	y 8:	25	g
Current collector	Сор	oper	Open loop r	ecycling	y 9.	50	g
Spring	Stee	el	Open loop r	ecycling	g 7:	50	g
Clamping bar	Stee	el	Open loop r	ecycling	y 20	070	g
Gasket	Silic	one	Landfill		5		g
Screws	Chr	omium steel	Open loop r	ecycling	g 2	7	g
Endplates	Gla	ss reinforced thermoplastic	Open loop r	ecycling	3	300	g
Gaskets	Silic	one	Landfill		12	260	g
Bipolar plates	Stai	nless steel	Open loop r	ecycling) 2	1623	g
MEA	/		Landfill & inc	cineratio	n 3:	278	g

PEMFC CASE-STUDY DEFINITION – E-LCA RESULTS

- Platinum is the main environmental hotspot (6 out of 7 indicators)
- Carbon support have negligable environmeltal impact
- The total mass share of platinum in the PEMFC is only 0.1%
- The production processes (electricity (EU mix) and water consumption) is the second highest contributor to the climate change, marine eutrophication and terrestrial eutrophication

eGHOST

- **Production rate** highly influence the cost of the PEMFC stack
- Higher production rate reduce
 cost of PEMFC stack for up to 93%
- Cost of **materials** more influential with **higher production rates**
- At **low production rates**, the **manufacturing processes** significantly contribute to total cost (56% for 100 stacks/year and 43% for 1000 stacks/year)

PEMFC CASE-STUDY DEFINITION – LCC RESULTS

- Contribution of costs of **materials**
- Ionomer, Gas Difussion Layer (GDL) and Platinum have the highest cost
- With **higher** production rates the cost of **ionomer** and **GDL reduces significantly** (92% and 96%), while the cost of platinum reduces only for 34%
- Platinum becomes the costly material in the PEMFC stack with production rate of 10,000 stacks/year
- All costs depend on the market, meaning they change without good prediction all the time, especially platinum

eghost

eGHOST Spring (20-24 May 2024)

PEMFC CASE-STUDY DEFINITION – S-LCA RESULTS

- Once again is **platinum** (from South Africa) the **main hotspot**, especially for child labour
- GDL production contributes the most to the only possitive indicator – contribution to economic development
- Significant impact have also endplates & BPP (both of them are produced in Europe) especially for **fair salary and forced labour**
- Fair salary has the highest potential risk between evaluated social indicators

LCSA SOEC case-study

- SOEC case-study E-LCA results
- SOEC case-study LCC results
- SOEC case-study S-LCA results

SOEC CASE-STUDY DEFINITION

• Prospective E-LCA

- Scope: Manufacturing and EoL phase
- For case-study screening only manufacturing phase is considered
- Functional unit: one 5 kWel SOEC stack without BoM
- LCI based on literature data and partners expertise
- LCIA: Environmental Footprint 3.1 (EF3.1)

• LCC

- Scope: Manufacturing phase
- 1 production rate 10,000 stacks per year
- Same inventory as for E-LCA

• S-LCA

- Scope: Manufacturing phase
- Same inventory as for E-LCA and LCC
- **PSILCA** database used

Component	Material	Mass
	8% mol YSZ [g]	8.7
Electrolyte	Binder Dow B-1000 [g]	3.8
Electrolyte	Ammonium polyacrylate ¹ [g]	1.5
	Water ¹ [g]	2.1
	8% mol YSZ [g]	258
Cathode	Nickel oxide [g]	368
	Binder Dow B-10001 [g]	239
	Ammonium polyacrylate [g]	10
	Water [g]	119
	LSCF [g]	86
Anode	YSZ/LSM [g]	21
	YSZ/LSM [g]	10
Intoroonnoota (Franco	Stainless steel [g]	11864
Interconnects/Frames	Perovskite coating [g]	33
Anode and cathode mesh	Stainless steel [g]	4572
Saclant	Lanthanum oxide [g]	14
Sealant	Boron-silicate glass [g]	4.7
End plates/Tie rods	Stainless steel [g]	12468
SOEC stack [g]		29709

1 - Binder Dow B-1000, ammonium polyacrylate, and water are not included in the stack and therefore, do not contribute to the total SOEC stack mass. They are included in the LCI because they are needed in the manufacturing phase of the stack.

SOEC CASE-STUDY DEFINITION – E-LCA RESULTS

- The main hotspot is stainless steel (6 out of 7 indicators)
- Stainless steel has also the highest mass rate within the SOEC stack
- Nickel oxide contributes the most to the acidification (60%)
- Significant impact has also electricity
 used in manufacturing process
- **Prospective 2030** electricity mix for Spain is used (81% RES)

eGHOST

- SOEC stack strongly dependent on the production scale (from 14k€ at lab scale to the 940€ at industrial scale)
- The share of cost of materials increases with higher production rate (from 9% to 56%)
- At the production rate 10,000 stack per year materials represent
 52% of the cost

SOEC CASE-STUDY DEFINITION – LCC RESULTS

- Contribution of costs of materials
- The shares of materials stays the same with production rate increase:
 - Endplates: 23%
 - Sealant: 0,2%
 - Interconnects: 72%
 - Cells: 5%
- Interconnects and endplates (stainless steel) have also the highest mass rate in the SOEC stack
- With **higher production rate** the cost of materials lowers for 62%

SOEC CASE-STUDY DEFINITION – S-LCA RESULTS

- Once again is stainless steel the main hotspot
- Contribution more **even** than in PEMFC
- Significant impacts have also: Ni-based catalyst, Lanthanum oxide, SOEC stack, and Cermet preparations
- Absolute values of impact lower than in PEMFC, again is the **fair salary** the most critical

eco-design Guidelines for Hydrogen Systems and Technologies

ECO-DESIGN ACTIONS & PRODUCT CONCEPTS

- PEMFC eco-design actions & product concepts
- SOEC eco-design actions & product concepts

ECO-DESIGN ACTIONS

eGHOST

PEMFC eco-design actions & product concepts

ECO-DESIGN ACTIONS – PEMFC

			Act	Ac	tion	Material/Com	ponent [)escriptio	n of action			rial/Com		Deseriation	on of action	
٠	Short-term a	ctions	2.1	ca	duce the talyst iding		T C	argets: lo Current be	ta Mirai [4]	-0.52 mg ario is 0.1		nai/Com	poneni	Reduce f	the use of virgin platinu that is already available	on the market
Action number	Action		aterial/ mpone	ent De	scription	n of action					particle optimization size, shape, surface increase the specific	ium (MEA	.)	expected	ets technical requiremen d). energy consumption	-
3.1	Low-impact impregnation/differ		EA	m		ring proces	ses (e.g.				due to interaction of Pt decrease the amount particle Pt is partially	ess steel		offsetting	ole energy with EU in g programs for carbon foo	tprint).
3.2	coating technologie Integration of RES fo production processe	r the				th CCM dire				able	terial, which further support and achieve	rnal case)		the stack weight. The curre of aluminum with stainless _ e overall stack impacts	steel covers.
3.3	Ready-to-recycle			Actio numb	Acti	ion			Advanta	iges ai	nd notes					b be reused; it
3.4	assembly technolog Reduce rejection ra	Sta	ack	7.1		rove the rec terials, espec			copperi	in curre	very of platinum a ent collectors. le the results from t				influence the energy minimize the dynamic	
Action				I	•			hybri	dization str		con	ditions of	the stack)			stack energy drop-control, ower hybrid
number	Action	Description	n of act	ion				_	ľ	-,					ntrol strategy, etc.). dation for manufacturers.	lower hybrid
4.1	Minimize the packaging	-				duce the m of the pack			5.2	Supply hydrog	y the fuel cell with gen	green	the use	ohase.	renewable) hydrogen is re dation for consumers.	commended in
4.2	Use reusable and low-impact packaging	Keep the corrugated				rith reusable rial.	strategy	/. L	5 4		he stack dismantlin cement within the s	-	More ef vehicles	ficient ma in very rea	aintenance – i.e. place t achable places, simplify th dation for manufacturers.	

			Axis	Action nr.	Action	Component	Description of action			G			
eGHOST S	Spring (20-2	24 May 2024)		3.6	Optimize upstream manufacturing	Component level	Especially in platinum extraction/supply chain.			GHOST			
ECO-D	ESIGN	ACTIONS – PEMFC		3.7	Improve the stack and system modularity	Stack / overall system	Simplifies maintenance, repairs, refurbishing, and dismantling in EoL.		E	GHUSI			
• Med	lium-to	-long-term	3 – production optimization	3.8	Reduce the distance between component manufacturers and system assembly site	Overall system	Find the strategy (within EU) where the distances between manufacturers of components will be optimized.	on vcled	Component	Description of action Target is 70-80% of recycled platinum in new products as a closed-loop strategy. To			
actio		long-lenn		3.9	Low-activation stack	Stack/BoP	Increases the stack durability and efficiency (by optimizing the thermal management system). Decrease of hydrogen and energy	inum -platinum	Platinum (MEA)	establish the recycling market, a large volume of technology in the market is required. Avoid the use of platinum. This is still at			
							consumption during activation phase using optimized catalyst.	alysts		laboratory level. Avoid/Reduce the use of ionomer (PFSA),			
Axis	Action nr.	Action	Compone		Description of action		Product specifications might lead to specific packaging with dedicated cleaning &	er proton hange		improve conductivity (sulfonated PEEK, sulfonated pentablock terpolymers, MOF-			
	6.2	Reduce nitrogen crossover	Stack		Increases the stack of and efficiency (by of	otimizing	washing logistics, logistic loops plus optimization [10]. Note: No data currently	erials ycled	lonomer (MEA)	polymer hybrid materials, etc.). Reduce the use of virgin ionomer (PFSA).			
6 – Prolonged		_		the anode purging recirculation).		the anode purging cycles and recirculation).		bon fiber or					
lifetime	6.3	Alternative catalyst support	MEA		another material to improve		Replacing carbon support with another material to improve cell		established infrastructure. <u>Recommendation level</u> Logistics: Use of renewable fuels and sustainable transport	ohene/ xy resin 1posites	Stainless steel (Bipolar Plates)	Reduce the stack weight with material substitution that meets technical demands.	
	7.2	Establish a secondary raw materials market specific to			durability.		for delivery of products. Storage: Reduce the frequency of distribution / balanced production and	ivative ling system gn	Balance of plant	Reduce the overall system size/weight with less material use.			
7 - Eol	7.12	FCH systems	Overall		Involve manufacturers phase of their produ		optimization of costs. Recommendation level			Reduce the number of cells, the number of components and the weight (i.e., in the case			
optimization	7.3	Promote the creation of industrialized processes and recycling centers to collect/recycle the stacks	system		establish market wh entities would participa	ere all	Avoid long distances by local (EU-based) manufacturing and recycling sites. Recommendation level At lower load the efficiency of FC is higher, and lifetime is	imize the power	Full stack	of a 48 kW stack, from 1.66-2.12 kW/kg to 2.46-4 kW/kg). This is done by increasing the MEA efficiency with different catalyst and ionomer choice: • 2.12 kW/kg stack needs 280 "standard MEA" to reach 48-50 kW.			
				5.4	efficient stacks to the system	Overall system	prolonged. New stacks provide additional power at higher efficiency due to technological improvements.	sity		 2.46 kW/kg stack needs 280 "light weight MEA" or keep 48-50 kW with only 241 MEA. 			
			5 – Iow impact during use phase	5.5	Develop refurbishing technologies for FC systems failing within low-to-medium lifetime	Overall system	Especially in the case of BoP components. Within the stack, refurbishing (or even reusing) the bipolar plates could be feasible.	-		 4 kW/kg stack needs 280 "light & efficient MEA" or keep 48-50 kW with only 149 MEA. 			
			_	5.6	Optimize the design of flow channels	Bipolar plates	Teasible. Optimize fuel consumption, oxygen distribution and water balance (humidification) systems.	of rnative Imercial nbranes	Membrane	Lower density and higher durability.			

ECO-DESIGN PRODUCT CONCEPTS – PEMFC

- Based on the eco-design actions four product concepts were defined
 - Realistic short-term concept
 - Realistic medium-to-long-term concept
 - Optimistic concept
 - Disruptive concept
- **Realistic short-term concept**: based just on short-term actions that will be realized and implemented in the FC industry in the near future
- Realistic medium-to-long-term concept: based on short-term actions and additionally including some medium-to-long-term actions
- **Optimistic concept** is the concept already under implementation by some top-end technological companies and/or developed at the laboratory scale
- **Disruptive concept** includes relevant above-mentioned actions plus others that are still under development or in the early research or even conceptual phase

eGHOST

REALISTIC SHORT-TERM PRODUCT CONCEPT

- A1.1 Use of recycled platinum
- A1.4 **Reuse** of stack housing (GRTP)
- A2.1 **Reduction** of platinum loading
- A2.2 Optimised **triple phase** boundary
- A2.3 Mass reduction of GDL, BPP, and ionomer

REALISTIC SHORT-TERM PRODUCT CONCEPT – MANUFACTURING PHASE

Implemented eco-design actions:

- A1.1 Use of recycled platinum
- A1.4 Reuse of stack housing (GRTP)
- A2.1 Reduction of platinum loading
- A2.2 Optimised **triple phase** boundary
- A2.3 Mass reduction of GDL, BPP, and ionomer

Component	Material	Base	Real-short
	Platinum nanoparticles – virgin [g]	26	9.1
Pt/C	Platinum nanoparticles – recycled [g]	/	3.9
	Carbon black [g]	39	37
lonomer	PFSA (Nafion) – virgin [g]	144	101
Ionomei	PFSA (Nafion) – recycled [g]	/	/
/	Water [g]	490	467
/	Alcohol [g]	220	210
Subgasket	PEN/PET film with thermo active glue [g]	1820	1733
Gas diffusion layer	Carbon cloths fibres [g]	1249	687
BPP	Stainless steel – virgin [g]	21623	18379
	Stainless steel – reused [g]	/	/
Gaskets	Silicone [g]	1265	1204
Endplate	Glass reinforced thermoplastic – virgin [g]	3800	2533
LIIUpiule	Glass reinforced thermoplastic – reused [g]	/	1086
Current collector	Copper – virgin [g]	950	905
Collector	Copper-recycled [g]	/	/
Compression bar	Chromium steel [g]	825	785
Hexagonal screws	Chromium steel [g]	27	26
Spring	Steel [g]	750	714
Clamping bar	Steel [g]	2070	1972
Electricity [kWh]	/	410	391
PEMFC stack		34588	30175

REALISTIC SHORT-TERM PRODUCT CONCEPT – EOL PHASE

Implemented eco-design actions:

- A1.1 Use of recycled platinum
- A1.4 Reuse of stack housing (GRTP

BEST	
4Hu	

REALISTIC MEDIUM-TO-LONG-TERM PRODUCT CONCEPT

REALISTIC MEDIUM-TO-LONG-TERM PRODUCT CONCEPT

Implemented eco-design actions:

- A1.1 Use of recycled platinum
- A1.4 Reuse of stack housing (GRTP)
- A2.1 **Reduction** of platinum loading (=)
- A2.2 Optimised triple phase boundary
- A2.3 Mass reduction of GDL, BPP, and ionomer
- A5 Refurbishment of BPP NEW

Component	Material	Base	Real-short	Real-mid/long
	Platinum nanoparticles – virgin [g]	26	9.1	8.4
Pt/C	Platinum nanoparticles – recycled [g]	/	3.9	3.6
	Carbon black [g]	39	37	24
lanamar	PFSA (Nafion) – virgin [g]	144	101	55
lonomer	PFSA (Nafion) – recycled [g]	/	/	/
/	Water [g]	490	467	307
/	Alcohol [g]	220	210	138
Subgasket	PEN/PET film with thermo active glue [g]	1820	1733	1142
Gas diffusion layer	Carbon cloths fibres [g]	1249	687	370
BPP	Stainless steel – virgin [g]	21623	18379	7974
DFF	Stainless steel – reused [g]	/	/	3418
Gaskets	Silicone [g]	1265	1204	793
Endplato	Glass reinforced thermoplastic – virgin [g]	3800	2533	1668
Endplate	Glass reinforced thermoplastic – reused [g]	/	1086	715
Current collector	Copper – virgin [g]	950	905	596
	Copper – recycled [g]	/	/	/
Compression bar	Chromium steel [g]	825	785	517
Hexagonal screws	Chromium steel [g]	27	26	17
Spring	Steel [g]	750	714	470
Clamping bar	Steel [g]	2070	1972	1299
Electricity [kWh]	/	410	391	257
PEMFC stack		34588	30175	19070

REALISTIC MEDIUM-TO-LONG-TERM PRODUCT CONCEPT

Implemented eco-design actions:

- A1.1 Use of recycled platinum (=)
- A1.4 **Reuse** of stack housing (GRTP)
- A5 Refurbishment of BPP NEW

Component	Material	EoL process	Reference	Real-short	Real-mid/long
Compression bar	Chromium steel [g]	Open loop recycling	825	785	517
Current collector	Copper [g]	Open loop recycling	950	905	596
Spring	Steel [g]	Open loop recycling	750	714	470
Clamping bar	Steel [g]	Open loop recycling	2070	1972	1299
Screws	Chromium steel [g]	Open loop recycling	27	26	17
Endplates	Glass reinforced thermoplastic [g]	Open loop recycling	3800	2533	1668
enaplates	Glass reinforced mermoplastic [g]	Reuse	/	1086	715
Gaskets	Silicone [g]	Landfill	1265	1204	793
	Staiplass staal [a]	Open loop recycling	21623	18379	7974
Bipolar plates	Stainless steel [g]	Reuse	/	/	3418
		Incineration & landfill	3278	/	/
MEA [g]		Recycling – BEST4Hy	/	2571	1603

OPTIMISTIC PRODUCT CONCEPT

OPTIMISTIC PRODUCT CONCEPT

Implemented eco-design actions:

- A1.1 Use of recycled platinum
- A1.4 Reuse of stack housing (GRTP)
- A2.1 Reduction of platinum for a loading
- A2.2 Optimised triple phase boundary
- A2.3 Mass reduction of GDL, BPP, and ionomer
- A5 Refurbishment of BPP
- A7 Closed-loop ionomer
 NEW
 recycling

Component	Material	Base	Real-short	Real-mid/long	Optimistic
	Platinum nanoparticles – virgin [g]	26	9.1	8.4	2.1
Pt/C	Platinum nanoparticles – recycled [g]	/	3.9	3.6	4.9
	Carbon black [g]	39	37	24	23
lanamar	PFSA (Nafion) – virgin [g]	144	101	55	29
lonomer	PFSA (Nafion) – recycled [g]	/	/	/	13
/	Water [g]	490	467	307	293
/	Alcohol [g]	220	210	138	131
Subgasket	PEN/PET film with thermo active glue [g]	1820	1733	1142	1087
Gas diffusion layer	Carbon cloths fibres [g]	1249	687	370	352
BPP	Stainless steel – virgin [g]	21623	18379	7974	3436
DFF	Stainless steel – reused [g]	/	/	3418	6871
Gaskets	Silicone [g]	1265	1204	793	755
Endplate	Glass reinforced thermoplastic – virgin [g]	3800	2533	1668	1589
chapiale	Glass reinforced thermoplastic – reused [g]	/	1086	715	681
Current collector	Copper – virgin [g]	950	905	596	567
Coneni collector	Copper-recycled [g]	/	/	/	/
Compression bar	Chromium steel [g]	825	785	517	493
Hexagonal screws	Chromium steel [g]	27	26	17	16
Spring	Steel [g]	750	714	470	448
Clamping bar	Steel [g]	2070	1972	1299	1236
Electricity [kWh]	/	410	391	257	245
PEMFC stack		34588	30175	19070	17603

eGHOST

OPTIMISTIC PRODUCT CONCEPT

Implemented eco-design actions:

- A1.1 Use of recycled platinum
- A1.4 **Reuse** of stack housing (GRTP)
- A5 Refurbishment of BPP 🚮
- A7 Closed-loop ionomer recycling NEW

Component	Material	EoL process	Reference	Real-short	Real-mid/long	Optimistic
Compression bar	Chromium steel [g]	Open loop recycling	825	785	517	493
Current collector	Copper [g]	Open loop recycling	950	905	596	567
Spring	Steel [g]	Open loop recycling	750	714	470	448
Clamping bar	Steel [g]	Open loop recycling	2070	1972	1299	1236
Screws	Chromium steel [g]	Open loop recycling	27	26	17	16
Endeletes		Open loop recycling	3800	2533	1668	1589
Endplates	Glass reinforced thermoplastic [g]	Reuse	/	1086	715	681
Gaskets	Silicone [g]	Landfill	1265	1204	793	755
Rip alor plotas		Open loop recycling	21623	18379	7974	3436
Bipolar plates	Stainless steel [g]	Reuse	/	/	3418	6871
		Incineration & landfill	3278	/	/	/
MEA [g]		Recycling – BEST4Hy	/	2571	1603	1511

DISRUPTIVE PRODUCT CONCEPT

DISRUPTIVE PRODUCT CONCEPT

Implemented eco-design actions:

- A1.1 Use of recycled platinum (a)
- A1.4 Reuse of stack housing (GRTP)
- A2.1 Reduction of platinum
 loading
- A2.2 Optimised triple phase boundary
- A2.3 Mass reduction of GDL, BPP, and ionomer
- A5 **Refurbishment** of BPP
- A7 Closed-loop ionomer and copper recycling
 NEW

Component	Material	Base	Real-short	Real-mid/long	Optimistic	Disruptive
	Platinum nanoparticles – virgin [g]	26	9.1	8.4	2.1	0.25
Pt/C	Platinum nanoparticles – recycled [g]	/	3.9	3.6	4.9	4.75
	Carbon black [g]	39	37	24	23	19
	PFSA (Nafion) – virgin [g]	144	101	55	29	1.8
lonomer	PFSA (Nafion) – recycled [g]	/	/	/	13	33
/	Water [g]	490	467	307	293	240
/	Alcohol [g]	220	210	138	131	108
Subgasket	PEN/PET film with thermo active glue [g]	1820	1733	1142	1087	891
Gas diffusion layer	Carbon cloths fibres [g]	1249	687	370	352	257
	Stainless steel – virgin [g]	21623	18379	7974	3436	1352
BPP	Stainless steel – reused [g]	/	/	3418	6871	5408
Gaskets	Silicone [g]	1265	1204	793	755	619
Endplate	Glass reinforced thermoplastic – virgin [g]	3800	2533	1668	1589	912
LIIUpiule	Glass reinforced thermoplastic – reused [g]	/	1086	715	681	391
Current collector	Copper – virgin [g]	950	905	596	567	93
	Copper – recycled [g]	/	/	/	/	372
Compression bar	Chromium steel [g]	825	785	517	493	404
Hexagonal screws	Chromium steel [g]	27	26	17	16	13
Spring	Steel [g]	750	714	470	448	367
Clamping bar	Steel [g]	2070	1972	1299	1236	1014
Electricity [kWh]	/	410	391	257	245	201
PEMFC stack		34588	30175	19070	17603	12152

DISRUPTIVE PRODUCT CONCEPT

Implemented eco-design actions:

- A1.1 Use of recycled platinum
- A1.4 Reuse of stack housing (GRTP)
- A5 **Refurbishment** of BPP
- A7 Closed-loop ionomer and copper recycling • NEW Waste PEMFC stack **PEMFC** stack 1st manual disassembling Compression bar, spring, Pre-assembly Current Endplates Gaskets collector clamping bar, screws .stack Silicone landfill Open-loop Endplates 2nd manual

disassembling

MEA

Best4Hy 🗳

Platinum and ionomer recycling – 95%

EoL process

Material

Component

reuse - 30%

Bipolar plates

reuse – 80%

Bipolar plates

steel recycling

This project has received funding from the Fuel Cells and Hydrogen 2 Joint Undertaking (now Clean Hydrogen Partnership) under Grant Agreement No 101007166. This Joint Undertaking receives support from the European Union's Horizon 2020 Research and Innovation programme, Hydrogen Europe and Hydrogen Europe Research.

Reference Real-short Real-mid/long Optimistic Disruptive

493

567

448

1236

1589

681

755

3436

6871

1511

16

1

404

93

372

367

13

912

391

619

1352

5408

1207

1014

517

596

470

1299

1668

715

793

7974

3418

1603

17

1

SOEC eco-design actions
ECO-DESIGN ACTIONS – SOEC

Medium-term actions

Axis	Action number	Action	Material/ Component	Description of action	
1	1.1	Different steel alloys	Stainless steel	Reduce the use of virgin stainless steel	5
	1.2	Recycled steel	Steel	Reduce the use of virgin steel	
	2.1	Optimize the end plates / frames / meshes	End plates, frames, meshes	To reduce the stainless-steel amount	
2	2.2	Change/optimize the cell shape and size	Cell	To reduce the amount of material employed	
	2.3	Change the stack type (electrolyte supported/cathode supported)	Stack	To reduce the amount of REE materials and of nickel	6
,	3.1	Use less or cleaner energy	All	Especially for cell sintering, which is particularly energy consuming (reduce the time and temperature)	14 This
3	3.2	Reduce the amount of chemicals/solvents in all production steps	All	E.g., use colloidal processing based on water instead of organic solvents	1* - This in the m 2* - This Assessm
4	4.1	Keep the current packaging	1*	Wooden boxes with multiple uses, durable packaging. There is room for improvement, but plastic bags are still used to ship stack components. Cardboard is also used.	

	5.1	Supply the system with green electricity	2*	To lower environmental impacts due to RES electricity use
	5.2	Optimize the balance of plant	2*	To reduce the overall energy consumption
5	5.3	Produce low-impact steam	2*	To reduce the environmental impacts due to steam production
	5.4	Use steam from steam networks	2*	To reduce the environmental impacts due to steam production. Depends on the location → recommendation level
	5.5	Use water recirculation	2*	To reduce overall water consumption
	6.1	Have harmonized standards to measure stack degradation	2*	-
6	6.2	Create harmonized protocols/recommend ations to start/operate the system	2*	-
		on relates to transport/logistic esented in D2.1 and D2.3.	s and will not be v	alidated in next steps as transportation is not included

2* - This recommendation action relates to the use phase of a product's eco-design (not subjected to further Life Cycle Assessment as only manufacturing and EoL phases are included in the methodology presented in D2.1 and D2.3).

							G
			2.5	Utilize a different electrolyte	Electrolyte	To reduce the amount of REE materials (e.g. proton conducting electrolyte)	HOST
C			3.3	Optimize the surface polishing/cleaning	Cell ^D	To reduce material losses/impacts	
		3	3.4	Use additive manufacturing instead of subtractive manufacturing	Stack	To reduce material losses	
			3.5	Improve the recycling rate	Module/system	Target/base case recycling rate	
Description of action	1		4.2	Optimize logistics	1*	E.g., reduce the distance between producers and consumers	
To reduce the amount of REEs		4	4.3	Clean way of transportation	1•	RES based electricity vehicles, FCEV trucks	
(especially of lanthanum and yttrium) in the stack			4.4	Vertical integration	1•	E.g., in-house production. This might reduce the impacts but increase the costs	
reduce the amount of stainless steel in the stack			5.6	Reduce the operating temperature	2*	To reduce the overall energy consumption	
Target: <5%		5	5.7	Change from sweep gas to pure oxygen	2*	Unclear whether this could reduce or increase the impacts (using pure oxygen could cause corrosion and safety issues)	
			6.3	Operate the system at lower temperatures	2*	To limit the stack degradation	
		6	6.4	Improve stack modularity	2*	To optimize part load operation and limit degradation	
			6.5	Redesign the BoP	BoP components	E.g., to heat up only the active area and not the structural elements such as end plates	
		7	7.1	Reuse some components after eventual remanufacturing	End plates, tie-rods	It may be possible to design some components to be reused after the first usage (e.g., increase end plates thickness to allow remanufacturing); in this case, thermal and mechanical properties need to be checked	
			7.2	Recycle/recover materials	Cathode, anode	BEST4Hy project [9] (e.g., cobalt and lanthanum, through hydrometallurgical processing)	

	\cup	/	

ECO-DESIGN ACTIONS – SOEC

Medium-to-long-term
 actions

Axis	Action number	Action	Component	Description of action
1	1.3	Different doping strategy for the catalysts	Cell	To reduce the amount of REEs (especially of lanthanum and yttrium) in the stack
	1.4	Ceramic materials	Interconnects ^D	To reduce the amount of stainless steel in the stack
2	2.4	Reduce material losses	Overall stack	Target: <5%

ECO-DESIGN PRODUCT CONCEPTS – SOEC

- Based on the eco-design actions two product concepts were defined
 - Enhanced realistic concept
 - Optimistic concept
- Enhanced realistic concept is based on medium-term actions that will be realized and implemented in the FCH industry in the near future (medium-term perspective in next 3 to 10 years)
- **Optimistic concept** includes all relevant above-mentioned medium-term actions with additional view on possible actions still under development or in the early research phase or even conceptual phase

REALISTIC PRODUCT CONCEPT

eGHOST

REALISTIC PRODUCT CONCEPT

Implemented eco-design actions:

- A1.1 **Reduction** of virgin stainless steel
- A1.2 Recycled stainless steel use
- A2.1 Redesign of endplates (mass reduction)
- A2.2 SOEC cell shape and size optimisation
- A2.3 **Mass reduction** of nickel and REE materials **EoL processes:**
- Open-loop recycling: stainless steel
- Landfill: all other materials

Component	Material	Base	Realistic
Electrolyte	8% mol YSZ [g]	8.7	4.0
/	Binder Dow B-1000 [g]	3.8	1.8
/	Ammonium polyacrylate ¹ [g]	1.5	0.1
/	Water ¹ [g]	2.1	1.0
Cathodo	8% mol YSZ [g]	258	119
Cathode	Nickel oxide [g]	368	1174
/	Binder Dow B-10001 [g]	239	113
/	Ammonium polyacrylate [g]	10	4.7
/	Water [g]	119	56
	LSCF [g]	86	36
Anode	YSZ/LSM [g]	21	8,2
	YSZ/LSM [g]	10	4.1
Interconnects /Eramos	Stainless steel [g]	11864	5599
Interconnects/Frames	Perovskite coating [g]	33	16
Anode and cathode mesh	Stainless steel [g]	4572	2158
Coglast	Lanthanum oxide [g]	14	4.8
Sealant	Boron-silicate glass [g]	4.7	2.2
End plates/Tie rods	Stainless steel [g]	12468	5239
SOEC stack [g]		29709	13364

eGHOST

1 - Binder Dow B-1000, ammonium polyacrylate, and water are not included in the stack and therefore, do not contribute to the total SOEC stack mass. They are included in the LCI because they are needed in the manufacturing phase of the stack.

OPTIMISTIC PRODUCT CONCEPT

OPTIMISTIC PRODUCT CONCEPT

Implemented eco-design actions:

- A1.1 Reduction of virgin stainless steel (=)
- A1.2 Recycled stainless steel use (=)
- A2.1 Redesign of endplates (mass reduction) (=)
- A2.2 SOEC cell shape and size optimisation
- A2.3 Mass reduction of nickel and REE materials
- A7.2 Recycling of SOEC anode NEW

EoL processes:

- Closed-loop recycling: SOEC anode (yttriastabilised zirconia and nickel oxide)
- Open-loop recycling: stainless steel
- Landfill: all other materials

Component	Material	Base	Realistic	Optimistic
	8% mol YSZ [g]	8.7	4.0	2.5
Electrolyte	Binder Dow B-1000 [g]	3.8	1.8	1.1
Electrolyte	Ammonium polyacrylate ¹ [g]	1.5	0.1	0.04
	Water1 [g]	2.1	1.0	0.6
	8% mol YSZ [g]	258	119	73
	Nickel oxide [g]	368	1174	110
Cathode	Binder Dow B-10001 [g]	239	113	71
	Ammonium polyacrylate [g]	10	4.7	3.0
	Water [g]	119	56	36
	LSCF [g]	86	36	20
Anode	YSZ/LSM [g]	21	8,2	4
	YSZ/LSM [g]	10	4.1	0.2
Interconnects/Ergness	Stainless steel [g]	11864	5599	3535
Interconnects/Frames	Perovskite coating [g]	33	16	10
Anode and cathode mesh	Stainless steel [g]	4572	2158	1362
Sociant	Lanthanum oxide [g]	14	4.8	2.0
Sealant	Boron-silicate glass [g]	4.7	2.2	1.4
End plates/Tie rods	Stainless steel [g]	12468	5239	3308
SOEC stack [g]		29709	13364	8430

1 - Binder Dow B-1000, ammonium polyacrylate, and water are not included in the stack and therefore, do not contribute to the total SOEC stack mass. They are included in the LCI because they are needed in the manufacturing phase of the stack.

eco-design Guidelines for Hydrogen Systems and Technologies

LIFE CYCLE SUSTAINABILITY ASSESSMENT

- Environmetal life cycle assesment
- Life cycle costing
- Social life cycle assessment
- Prioritisation of ecodesign actions
- Extented scope with use phase

Environmental life cycle assessment

- PEMFC environmental LCA
- SOEC environmental LCA

ENVIRONMENTAL LIFE CYCLE ASSESSMENT

- Conventional E-LCA analysis for PEMFC and prospective E-LCA analysis for SOEC
- Scope: manufacturing and EoL phase
- Functional unit:
 - PEMFC: one 48kW_{el} PEMFC stack
 - SOEC: one 5kW_{el} SOEC stack
- Life cycle inventory:
 - PEMFC: provided by industry partner SYMBIO France
 - SOEC: literature data and partners expertise
- LCIA methodology: Environmental Footprint 3.1
 - Acidification
 - Climate change
 - Eutropfication freshwater, marine and terrestrial
 - Resource use fossils and minerals & metals

phase:

•

ENVIRONMENTAL LIFE CYCLE ASSESSMENT – LCA model for mid/long-term concept

 Closed-loop recycling & reuse • Seperate phase, since it can be **Endplates (GRTP)** included in both manufacturing Platinum and EoL phase reuse Avoided impacts Stainless **BPP** (Stainless steel) reuse Represent **potential reductions** steel PEMFC from open-loop recycling stack Are not included in results GRTP Platinum recycling Other Open loop recycling materials Landfill System boundary Manufacturing phase Closed-loop recycling & reuse phase Other End-of-life phase technologies Avoided impacts

ENVIRONMENTAL LIFE CYCLE ASSESSMENT – PEMFC RESULTS

- Average reductions:
 - Realistic short-term concept: -37%
 - Realistic mid/long-term concept: -54%
 - Optimistic concept: -75%
 - Disruptive concept: -86%
- Freshwater eutrophication is the only impact category where ecodesign actions increase the environmental impact (due to the platinum recycling process – TRL5)
- Climate change reductions:
 - Realistic short-term concept: -31%
 - Realistic mid/long-term concept: -52%
 - Optimistic concept: -74%
 - Disruptive concept: -85%

ENVIRONMENTAL LIFE CYCLE ASSESSMENT – PEMFC RESULTS

ENVIRONMENTAL LIFE CYCLE ASSESSMENT – PEMFC RESULTS

ENVIRONMENTAL LIFE CYCLE ASSESSMENT – PEMFC RESULTS

eGHOST

ENVIRONMENTAL LIFE CYCLE ASSESSMENT – PEMFC RESULTS

ENVIRONMENTAL LIFE CYCLE ASSESSMENT – PEMFC RESULTS

- Acidification
- Climate change •
- Eutrophication ٠ freshwater
- Eutrophication marine ٠
- Eutrophication ٠ terrestrial
- **Resource use fossils**

ENVIRONMENTAL LIFE CYCLE ASSESSMENT – SOEC RESULTS

- Average reductions:
 - Realistic concept: -70%
 - Optimistic concept: -84%
- Eco-design actions have a similar effect on most impact categories
- Climate change reductions:
 - Realistic concept: -70%
 - Optimistic concept: -83%

Life cycle costing

- PEMFC life cycle costing
- SOEC life cycle costing

LIFE CYCLE COSTING

- Conventional LCC analysis for PEMFC and prospective LCC analysis for SOEC
- Scope: manufacturing phase
- Life cycle costing is based on the **same inventory** as environmental LCA
- PEMFC: 4 production rates
 - 100 stack per year
 - 1000 stacks per year
 - 10000 stacks per year
 - 50000 stacks per year
- SOEC: 1 production rate
 - 10000 stacks per year
- Levelized cost of stack production is calculated
- Eco-efficiency based on environmental LCA

LIFE CYCLE COSTING – PEMFC RESULTS

- Production rate increase (from lab to industrial scale) causes significant cost reductions
 - From **-93%** (reference case) to **-96%** (disruptive concept)

LIFE CYCLE COSTING – PEMFC RESULTS

- Production rate increase (from lab to industrial scale) causes significant cost reductions
 - From **-93%** (reference case) to **-96%** (disruptive concept)
- Cost reduction due to the ecodesign (at 10000 stacks/year)
 - Realistic short-term concept: -28%
 - Realistic mid/long-term concept: -37%
 - Optimistic concept: -49%
 - Disruptive concept: -52%
- All product concepts meets the threshold of -3% LCC reduction in comparison to the reference case

LIFE CYCLE COSTING – PEMFC RESULTS

- **Eco-efficiency** and **factor X** presented for production rate 10000 stacks/year
- Eco-efficiency ratio between the products's value and the environmental impact caused by the product
- Externalities costs due to the negative environmental impacts

$$Eco - efficiency_{i,j} = \frac{1/LCC_i}{Carbon \ footprint_i}$$

$$Factor X_{i,j} = \frac{Eco - efficiency_{i,j}}{Eco - efficiency_{bc,i}}$$

i – Product concept j – Carbon footprint bc – Base case

	Base	Real short	Real mid/long	Optimistic	Disruptive
Externalities [€ / stack]	418	215	165	68	31
Relative reduction of externalities	/	49%	60%	84%	93%
Eco-efficiency [1/€*kg CO ₂ eq/stack]	2.63E-07	5.26E-07	8.68E-07	1.97E-06	3.57E-06
Factor X - PEMFC	1.00	2.00	3.30	7.47	13.54

This project has received funding from the Fuel Cells and Hydrogen 2 Joint Undertaking (now Clean Hydrogen Partnership) under Grant Agreement No 101007166. This Joint Undertaking receives support from the European Union's Horizon 2020 Research and Innovation programme, Hydrogen Europe and Hydrogen Europe Research.

1 /

LIFE CYCLE COSTING – SOEC RESULTS

- Cost reduction
 - Realistic concept: -41%
 - Optimistic concept: -50%
- The cost of BoM is reduced by 76% and manufacturing processes by 18% (optimistic concept)
- All product concepts meets the threshold of 3% LCC reduction in comparison to the reference case
- Externalities reduction:
 - Realistic concept: -70%
 - Optimistic concept: -83%

Social life cycle assessment

- PEMFC social LCA
- SOEC social LCA

SOCIAL LIFE CYCLE ASSESSMENT

- Scope: manufacturing phase
- Social LCA is based on the **same inventory** as environmental LCA and LCC
- Economic data needed for calculation related to the production rate of 10000 stacks/year
- Three supply tiers were assessed
 - Stack manufacturing
 - Components manufacturing
 - Materials extraction
- PSILCA database is used for calculation
- Assessed social impact categories:
 - Forced labour
 - Child labour
 - Health and safety
 - Fair salary
 - Discrimination
 - Contribution to economic development

SOCIAL LIFE CYCLE ASSESSMENT – PEMFC RESULTS

- Main hotspot mining of platinum in South Africa
- With development of product concepts, the hotspot **shifts** to **plate manufacturing** in **Spain**
- Contribution to economical development the **only positive** indicator
- Average **reduction** with ecodesign concept:
 - Realistic short-term concept: -47%
 - Realistic mid/long-term concept: -56%
 - Optimistic concept: -71%
 - Disruptive concept: -77%

eGHOST

SOCIAL LIFE CYCLE ASSESSMENT – PEMFC RESULTS

SOCIAL LIFE CYCLE ASSESSMENT – SOEC RESULTS

Eco-design actions have a relevant impact on most categories of social impacts (as in the case of E-LCA)
Average reductions:

Realistic concept: -64%
Optimistic concept: -80%

The highest reductions in both product concepts are achieved for child labour indicator

Prioritisation of eco-design actions

PRIORITISATION OF ECO-DESIGN ACTIONS

- Which eco-design action contributes the most to the environmental impact reductions?
- Case for realistic mid/long-term concept
 s
- Similar impacts of eco-design actions on all impact categories except freshwater eutrophication
- Eco-design action 2.1 (Pt loading reduction) contributes the most to the environmental impacts reductions
- Significant reduction also from ecodesign action 1.1 (recycled Pt use) and 2.3 (mass reduction of BPP, GDL, and ionomer)

PRIORITISATION OF ECO-DESIGN ACTIONS

- **The order** of eco-design actions implementation **do not** significantly influences the contributions of ecodesign actions
- Example for **climate change** indicator

PRIORITISATION OF ECO-DESIGN ACTIONS

Extended prioritisation of eco-design action also for economic and social aspect is done for optimistic concept

eGHOST

- Eco-design action with the greatest impact:
 - PEMFC: Action 2.1 (reduction of Pt loading)

PRIORITISATION OF ECO-DESIGN ACTIONS

- Extended prioritisation of eco-design action also for economic and social aspect is done for optimistic concept
- Eco-design action with the greatest impact:
 - SOEC: Action 2.2 (SOEC cell shape and size optimisation)

Extended scope with use phase

EXTENDED SCOPE WITH USE PHASE PROSPECTIVE

- Analysis for optimistic product concept
 and carbon footprint
- **PEMFC:** Use phase contributes the most of GWP emissions

EXTENDED SCOPE WITH USE PHASE PROSPECTIVE

- Analysis for optimistic product concept
 and carbon footprint
- **PEMFC:** Use phase contributes the most of GWP emissions
- **SOEC:** use phase contributes the vast majority of GWP emissions and costs in the whole life cycle of SOEC

eco-design Guidelines for Hydrogen Systems and Technologies

ECO-DESIGN GUIDELINES

ECO-DESIGN GUIDELINES

G eGHOST

- Structured in 6 different life cycle stages
 - Materials selection
 - Manufacturing
 - Transport
 - Operation
 - End of Life
 - Concepts development
- From generic eco-design guidelines (eco-design wheel) a technology specific guidelines are defined
- Two time frames of the eco-desing guidelines
 - Medium term (3 10 years) green
 - Medium to long-term (> 10 years) purple

G eGHOST

ECO-DESIGN GUIDELINES – PEMFC

codesign topics		04 - 0P	PERATION		
01 – MATERIA	LS		on of impact during use		
1.1 Selection of low in	npact materials	Reduce consumption in	energy use Optimize the Balance of Plant (BoP) to reduce the overall energy consumption (e.g. optimize Energy Management System)		
laduati	ensity of use of materials		 Optimize the control strategy to minimize the stack energy consumption. 		
iversity 02 – MAN	NUFACTURING		 Reduce operating temperature of the system, to reduce energy consumption 	Stack manufac	turer
educti f mate Reduce the numbe			05 - END OF LIFE		
production steps Reduce the ene	 Optimize number 		Integrate possibility of reuse of components, products Develop processes and protocols to facilitate the reuse/remanufacturing/refurbishing of valuable components (e aluminum housing). These processes may include inspection of components to determine if they are suitable for was		Stack manufact
consumption production	in Use less energy of and costs. Reduct	consumable for operation	Possibility for remanufacturing / Develop automated and industrialized processes for efficient stack dismantling (mechanical disassembly techniques refurbishing of the	_	Stack manufact
	► Revalorize therma	and materi	Components Design for modularity and disassembly at end of life		
	 Recover electricit 	operation 4.2 Optimiz	Improve the recycling of materials, especially platinum and membrane		
educti Limit and rod production 03	– TRANSPORT	Improve the i and durability system	 Develop recycling streams and processes for PEMFC materials (find ways to disassembled the stack, and recyclin valuable materials in the stack). Envisage hydrometallurgy processes for critical raw materials recovery. Use existing recycling streams for aluminum, copper and stainless steel recovery 	g processes for	Stack manufact and automotiv recyclers
3.1 C	Dptimization of distributio		 Improve the total recycling rate of PEMFC systems 		
and packa	Use r		Safe incineration if no possibility for recycling Ensure safe incineration of the components if recycling is not possible		Recyclers
	y efficiency	Ensure maintenance repair	easy and Ease stack maintenance (e.g. access, cell replacement), simplify the fastening	Stack manufac	turer
for installe		Provide a n		Stack manufac	turer
mainte	enance ► Redu	Standardize reparation maintenance procedures	and Develop harmonized standards to measure stack degradation	Stack manufac	turer

ECO-DESIGN GUIDELINES – SOEC

1.1 Selec	ction of low impact mate	erials	04 – OPERA	ATION	
Selection of a			4.1 Reduction of	of impact during use	
materials		se materials with low	Reduce energy	Optimize	the Balance of Plant (BoP) to reduce the overall energy consumption (e.g. to heat up only active materials and not structural elements such as
		r nerformance	consumption in use		
	02 – MANUFAC	URING		05 - END OF L	.IFE
	2.1 Optimization of ma	nufacturing tech		Integrate possibility of	Develop processes and protocols to facilitate the reuse/remanufacturing of steel components (end plates, interconnects, module and BoP components)
	Reduce the number of	 Optimize nu 		reuse of components,	 Develop processes and protocols to racilitate the reuse/remanufactoring of steer components (end plates, interconnects, module and bor components) – in particular offcuts
election of r	production steps	 Merge the fi 	-	products Possibility for	
nd sustaina	Reduce the energy	 Use less ene 		romanufact	Develop automated and industrialized processes for officient stack dismantling (mechanical disassembly techniques)
aterials	consumption in	time and ter	Use clean energ	refurbishing 06 – NE	EW CONCEPTS DEVELOPMENTS
	production		consumable sou	component:	Add functionalities to end plates like thermal management system, to justify its size and weight
election of r		Use cleaner	operation Use less consu		
ith low ene		 Develop1 II 	and material:		Design for modularity and disassembly at end of life
anniow ene		 Revalorize tł 	operation	Possibility of recycling	
ntegration		 Develorize II 	4.2 Optimization	rossibility of recycling	Develop recycling streams and processes for SOEC materials (find ways to disassemble the stack, and recycling processes for valuable materials in the stack). Envisage hydrometallurgy processes for critical raw materials recovery without compromising environmental, social and economic impact
naterials	Limit and reduce	Revalorize H	Improve the r		stack). Envisage hydromenaliorgy processes for chilical raw materials recovery without compromising environmental, social and economic impact compared to the use of virain materials.
aronais	production wastes	 Integrate integrate 	and durability		
ntegration o		reduce envi	system		Reuse of terminal plates developed in "material part"
naterials		 Optimize pro 			Use existing recycling streams for steel recovery
		work with su			
					Improve the recyclability of steels
.2 Red	Reduce consumables in	Reduce/opt	Ensure easy		Improve the total recycling rate of SOEC systems
eduction of	production and use		maintenance an Provide a modulo		
f materials	clean consumables	 Select wate 	structure for the s		Find other application for the stack with less stringent requirements than H2 production. Since the stack can be reversible according to its design, Fuel cell
			Standardize repa		mode could offer a second life. This should take into consideration the problems that can encounter stack at end of life like leaks or contacts problems.
eduction of			and maintenanc	Safe incineration if no	Ensure safe incineration of the components if recycling is not possible
naterials	03 – TRANSPORT		procedures	possibility for recycling	
eduction of	3.1 Optimization of dist	ribution process	[
)f	Use transportation mode	inconon process			
naterials/co	with high energy	Use as clear	as possible ways of	transportation for logistic	
	efficiency		,,,	,	
	Optimize the logistic for				
	manufacturing,	 Facilitate loc 	al supply chains for	materials and components	S S S S S S S S S S S S S S S S S S S
	installation and maintenance				
				equivalent performances of	i me ceis

eco-design Guidelines for Hydrogen Systems and Technologies

FINAL REMARKS

FINAL REMARKS

- In order to define eco-design guidelines, first LCSA of the reference case has to be made
- Platinum (PEMFC) and stainless steel (SOEC) have been identified as the main hotspots
- Eco-design wheel provides generic eco-design actions which were implemented to specific hydrogen technology
- 4 product concepts for PEMFC and 2 product concept for SOEC technology have been defined
- With eco-design actions major reductions in environmetal, social and economic impacts are achieved
- Technology specific guidelines are given to help hydrogen value chain actors to understand where environmental, social and economic challenges might occur and to identify potential actions to tackle those challenges

eGHOST

eco-design Guidelines for Hydrogen Systems and Technologies

Jure Gramc

University of Ljubljana, Faculty of Mechanical Engineering jure.gramc@fs.uni-lj.si

the European Unio

