Environmental Life Cycle Assessment of hydrogen systems II – Criticality assessment of hydrogen systems Christina Wulf, Andrea Schreiber (Forschungszentrum Jülich)

Clean Hydrogen Partnership No this project has received funding from the Fuel Cells and Hydrogen 2 Joint Undertaking (now Clean Hydrogen Partnership) under Grant Agreement No 101007163. This Joint Undertaking receives support from the European Union's Horizon 2020 Research and Innovation program, Hydrogen Europe and Hydrogen Europe Research. The contents of this document are provided "AS IS". It reflects only the authors' view and the JU is not responsible for any use that may be made of the information it contains.

SH2E

CHRISTINA WULF

- Head of the team Life Cycle Sustainability Assessment Methods at the Institute of Energy and Climate Research – Jülich Systems Analysis
- Fields of Research
 - Life Cycle (Sustainability) Assessment
 - Multi-Criteria Decision-Analysis
 - · Specialization on hydrogen energy systems
- Background
 - Since 2015 at FZJ
 - PhD from the Hamburg University of Technology, Institute of Environmental Technology and Energy Economics
 - Engineer

JÜLICH

Forschungszentrum

SH²E

CRITICALITY ASSESSMENT OF HYDROGEN SYSTEMS

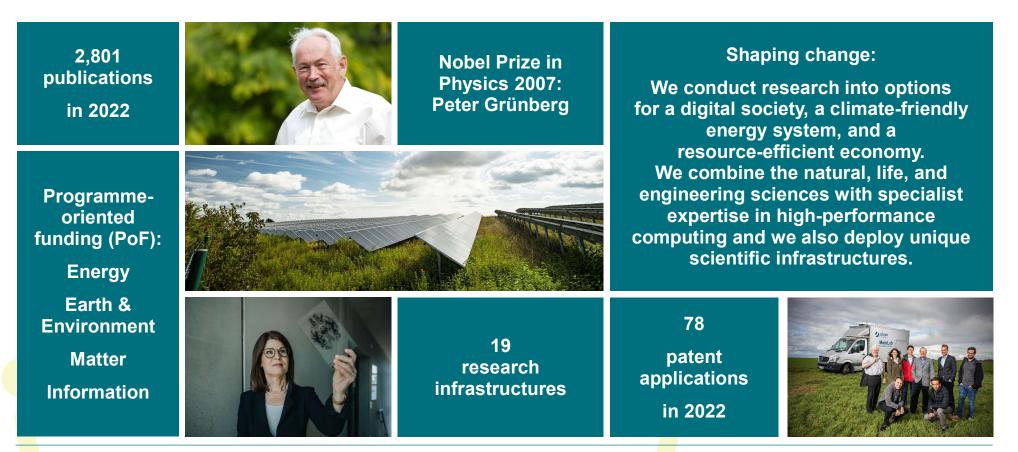
TABLE OF CONTENT

- 1. INTRODUCTION FZJ
- 2. INTRODUCTION OF LCA AND LCSA
- 3. MOTIVATION FOR RESOURCE CRITICALITY ASSESSMENT
- 4. CRITICALITY IN LCA
- 5. FROM THE EU APPROACH TO AN LCA IMPACT ASSESSMENT
- 6. CASE STUDY
- 7. SUMMARY
- 8. START YOUR OWN CRITICALITY ASSESSMENT

CRITICALITY ASSESSMENT OF HYDROGEN SYSTEMS

TABLE OF CONTENT

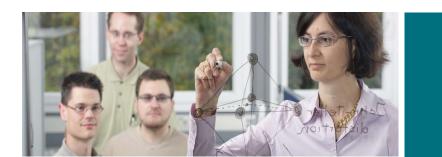
- 1. INTRODUCTION FZJ
- 2. INTRODUCTION OF LCA AND LCSA
- 3. MOTIVATION FOR RESOURCE CRITICALITY ASSESSMENT
- 4. CRITICALITY IN LCA
- 5. FROM THE EU APPROACH TO AN LCA IMPACT ASSESSMENT
- 6. CASE STUDY
- 7. SUMMARY
- 8. START YOUR OWN CRITICALITY ASSESSMENT



1,595 technical and laboratory employees	2,891 scientists	PES Summer		
We seek to be a pioneer in catalysing		7,250 employees 111 countries		
transformation and progress in society.			937 administrative employees	Involvement in 572 national research projects

67 joint professorial appointments within the Jülich Aachen Research Alliance (JARA)

Our network:


164 joint professorial appointments with 18 universities in Germany and Europe


Involvement in 176 EU projects; coordination of 31 of these

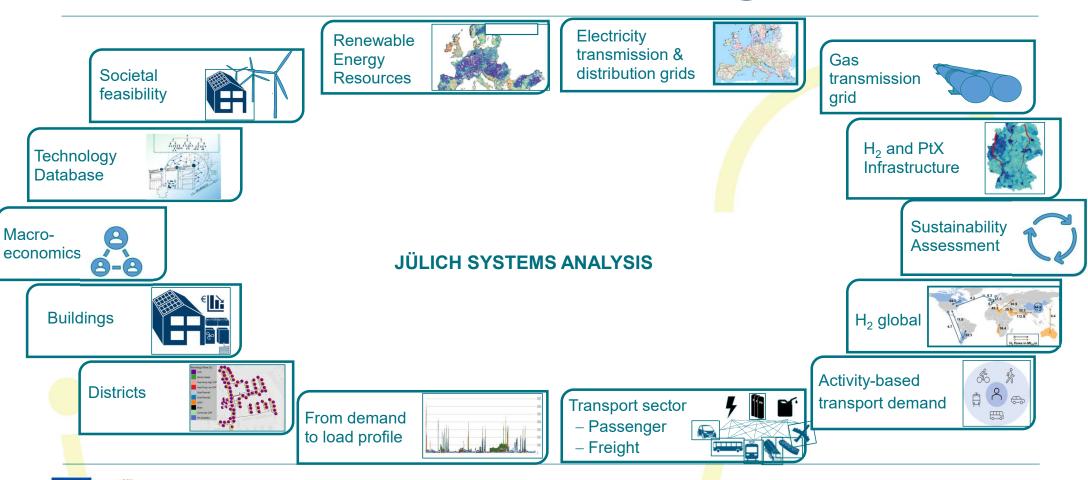
284 trainees and students on placement in over 20 occupations International:

1,217 visiting scientists from 79 countries

1,364 doctoral researchers, 43 % from abroad


> 309 postdocs 50 % from abroad

Diversity is a requirement for success in our work.



Co-funded by the European Uni

SHZE

Forschungszentrum

Clean Hydrogen Partnership under Grant Agreement No 101007163. This Joint Undertaking receives support from the European Union's Horizon 2020 Research and Innovation program, Hydrogen Europe and Hydrogen Europe Research. The contents of this document are provided "AS IS". It reflects only the authors' view and the JU is not responsible for any use that may be made of the information it contains.

DEPARTMENT SUSTAINABLE LIFE CYCLES

Methodology development for Sustainability Assessment:

- Life cycle approach
- Widening environmental assessment by economic and social dimension
- Prospectivity in LCSA
- Multi criteria decision analysis, MCDA

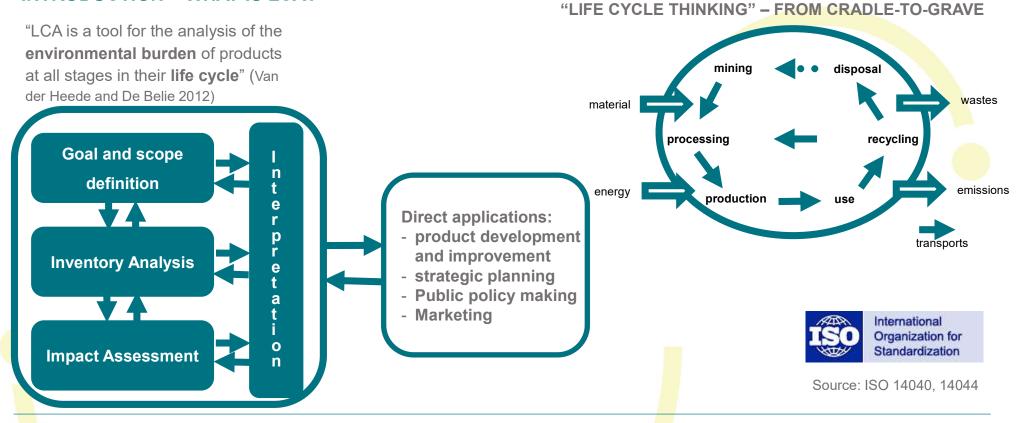
Technology expertise:

- Power-to-X (electrolyzer, fuel cells, PtFuels, PtSyngas, PtChemicals)
- CO₂-reduction (CCUS, DAC, batteries, PV, wind)
- Resource supply technologies (Al, Cu, RE)
- Bio-based value chains (energy, surfactants, aerogels, batteries)

This project has received funding from the Fuel Cells and Hydrogen 2 Joint Undertaking (now Clean Hydrogen Partnership) under Grant Agreement No 101007163. This Joint Undertaking receives support from the European Union's Horizon 2020 Research and Innovation program, Hydrogen Europe and Hydrogen Europe Research.

CRITICALITY ASSESSMENT OF HYDROGEN SYSTEMS

TABLE OF CONTENT


- 1. Introduction FZJ
- 2. Introduction of LCA and LCSA
- 3. Motivation for resource criticality assessment
- 4. Criticality in LCA
- 5. From the EU approach to an LCA impact Assessment
- 6. Case study
- 7. Summary
- 8. Start your own criticality assessment

INTRODUCTION – WHAT IS LCA?

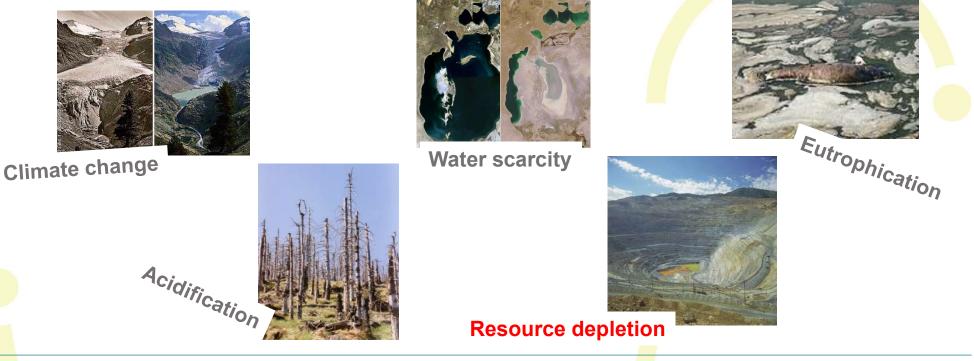
INTRODUCTION – WHAT IS LCA?

The goal and scope of the study shall be clearly defined and consistent with the intended application

Inventory analysis (LCI) involves data collection and calculation procedures to quantify relevant inputs and outputs of a product system

Impact assessment (LCIA) aims at evaluating the significance of potential impacts using the results of the inventory

conclusions, explain limitations and provide recommendations


Interpretation deliver results that are consistent with the goal and scope, and which reach

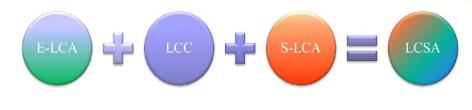
INTRODUCTION – WHAT IS LCA?

DIFFERENT TECHNOLOGIES CAUSE DIFFERENT ENVIRONMENTAL IMPACTS:

INTRODUCTION – WHAT IS LCA?

POTENTIAL IMPACTS

Climate Change GWP • **Eutrophication potential** EP • Acidification AP • Human toxicity HTP • **Ecotoxicity** FAETP / MAETP / TETP • **Resource depletion** ADP • Water use . Land use


kg CO₂ eq. kg P eq./kg N eq. kg SO₂ eq. kg 1,4-DCB eq. kg 1,4-DCB eq. kg Sb eq. m³ world eq. m²a

INTRODUCTION – WHAT IS LIFE CYCLE SUSTAINABILITY ASSESSMENT (LCSA)?

KEEPING THE LIFE CYCLE APPROACH BY COMBINING ENVIRONMENTAL ASSESSMENT (E-LCA), LIFE CYCLE COSTING (LCC) AND SOCIAL ASSESSMENT (S-LCA)

 Environmental Evaluation
 Economic Evaluation
 Social Evaluation

 Image: Social Evaluation
 Image: Social Evaluation
 Image: Social Evaluation

 Image: Social Evaluation
 Image: Social Evaluation
 Image: Social Evaluation

INTRODUCTION – WHAT IS LIFE CYCLE SUSTAINABILITY ASSESSMENT (LCSA)?

E-LCA is "...a tool for the analysis of the **environmental** burden of products at all stages in their life cycle...."

LCC is "...an assessment of all **costs** associated with the life cycle of a product that are directly covered by anyone or more of the actors in the product life cycle...."

S-LCA is "...an impact assessment technique that aims to assess the social and socio-economic aspects of products and their potential positive and negative impacts along their life cycle...."

JÜLICH

Forschungszentrum

SH²E

INTRODUCTION – WHAT IS LIFE CYCLE SUSTAINABILITY ASSESSMENT (LCSA)?

TYPICAL LCC INDICATORS:

- Investment costs
- Variable operation and maintenance costs
- Fixed operation and maintenance costs (wages, taxes, heating, lighting)
- Levelized costs of electricity (Σ Invest, fix & variable O&M)
- Internalized external effects (CO₂ taxes)

INTRODUCTION – WHAT IS LIFE CYCLE SUSTAINABILITY ASSESSMENT (LCSA)?

STAKEHOLDER GROUPS AND TYPICAL S-LCA INDICATORS:

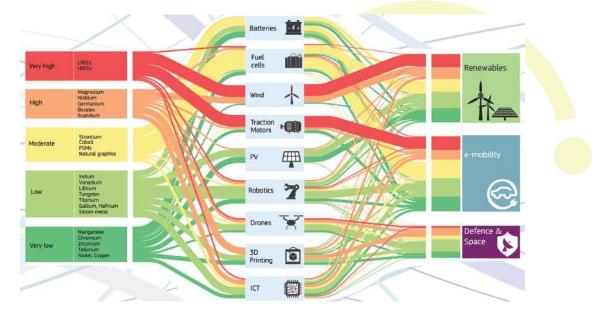
- Workers
 - Child labor
 - Fatal accidents
 - Fair salary
- Local communities
 - Unemployment rate
 - Drinking water coverage
 - Indigenous rights
- Society
 - Illiteracy
 - Contribution to economic development

- Consumers
 - Deceptive or unfair business practices
 - End of life responsibility
- Value chain actors
 - Fair competition
 - Corruption

CRITICALITY ASSESSMENT OF HYDROGEN SYSTEMS

TABLE OF CONTENT

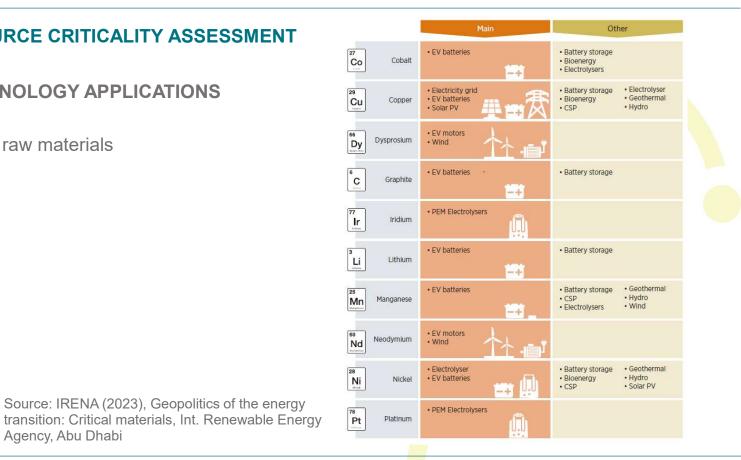
- 1. Introduction FZJ
- 2. Introduction of LCA and LCSA
- 3. Motivation for resource criticality assessment
- 4. Criticality in LCA
- 5. From the EU approach to an LCA impact Assessment
- 6. Case study
- 7. Summary
- 8. Start your own criticality assessment



MOTIVATION FOR RESOURCE CRITICALITY ASSESSMENT

- Transformation of the energy system requires a high intensity of mineral raw materials
- Continuous and secure supply of raw materials is highly relevant
- Raw material criticality: assessment of vulnerability to supply disruptions

Source: EC, Joint Research Centre, 2020, Critical Raw Materials for Strategic Technologies and Sectors in the EU - A Foresight Study



MOTIVATION FOR RESOURCE CRITICALITY ASSESSMENT

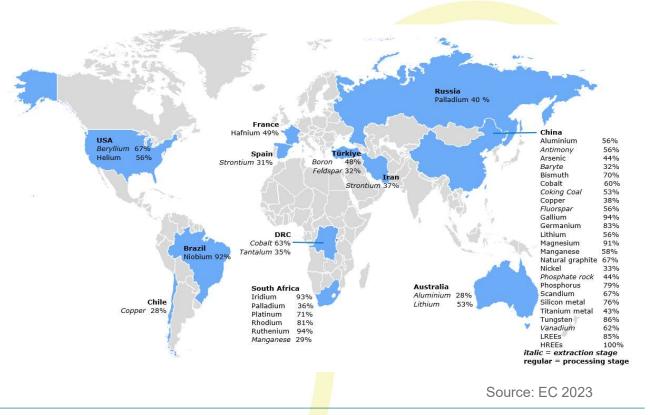
ENERGY-RELATED TECHNOLOGY APPLICATIONS

Global demand for certain raw materials will increase dramatically

This project has received funding from the Fuel Cells and Hydrogen 2 Joint Undertaking (now Clean Hydrogen Partnership) under Grant Agreement No 101007163. This Joint Undertaking receives support from the European Union's Horizon 2020 Research and Innovation program, Hydrogen Europe and Hydrogen Europe Research.

The contents of this document are provided "AS IS". It reflects only the authors' view and the JU is not responsible for any use that may be made of the information it contains.

Source: IRENA (2023), Geopolitics of the energy


Agency, Abu Dhabi

MOTIVATION FOR RESOURCE CRITICALITY ASSESSMENT

- EU is highly dependent on Critical Raw Material (CRM) imports
- CRMs subject to supply disruption

 → obstacle for a climate neutral economy by 2050
- European Critical Raw Materials Act (EC-CRM): Framework for ensuring a secure and sustainable supply of CRMs (March 2023)

This project has received funding from the Fuel Cells and Hydrogen 2 Joint Undertaking (now Clean Hydrogen Partnership) under Grant Agreement No 101007163. This Joint Undertaking receives support from the European Union's Horizon 2020 Research and Innovation program, Hydrogen Europe and Hydrogen Europe Research.

Ni

Copper

Chile

29 Cu

23.6%

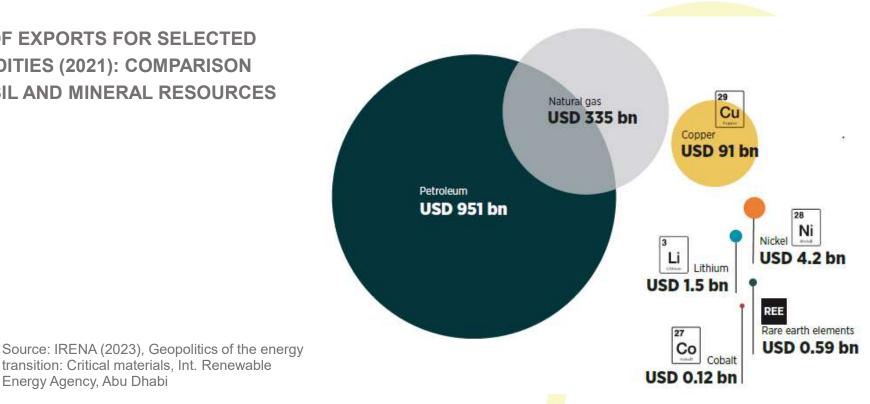
SH2E Spring School (20-24 May 2024)

MOTIVATION FOR RESOURCE CRITICALITY ASSESSMENT

KEY MINING COUNTRIES FOR SOME MINERALS

								Nickel	Webs	Chile	23.0%
	77			No. of Concession, Name	Pt		160	Indonesia	48.8%	Peru	10.0%
Iridium	Ir			Platinum	- Martinan	Cobalt	Co	Philippines	10.1%	Democratic Republic of	10.0%
South Africa	88.9%		Nd	South Africa	73.6%	Democratic	70.0%	Russian	6.7%	the Congo	
Zimbabwe	8.1%	Neodymlum	INC.	Russian Federation ,	10.5%	Republic of the Congo		Federation		China	8.6%
Russian	2.9%	China	45.8%	Zimbabwe	7.8%	Indonesia	5.4%	France (New Caledonia)	5.8%	United States	5.9%
Federation	0.1%	Australia	23.1%	Canada	3.1%	Russian	4.8%	Australia	4.9%	Russian Federation	4.5%
Others	0.1%	Greenland*	8.2%	United States	1.7%	Federation	41	Canada	4.0%		4 10/
	Dy	Myanmar	7.4%	Others	7 70/	Australia	3.2%			Indonesia	4.1%
Dysproslum	Dy	Brazil	4.4%	Others	3.3%	Canada	2.1%	China	3.3%	Australia	3.7%
China	48.7%	India	2.1%			Cuba	2.0%	Brazil	2.5%	Zambia	3.5%
Myanmar	23.1%	Others	9.0%			Philippines	2.0%	Others	13.9%	Mexico	3.3%
Australia	7.6%	- Stricts				Others	10.5%			Kazakhstan	2.6%
United States	2.9%)				Canada	2.4%
Canada	2.7%		· · ·			ergy transition:				Poland	1.7%
Others	15.0%	Critical m	aterials, Ir	nt. Renewable l	Energy Ag	ency, Abu Dhat	oi			Others	16.1%

This project has received funding from the Fuel Cells and Hydrogen 2 Joint Undertaking (now Clean Hydrogen Partnership) under Grant Agreement No 101007163. This Joint Undertaking receives support from the European Union's Horizon 2020 Research and Innovation program, Hydrogen Europe and Hydrogen Europe Research.



MOTIVATION FOR RESOURCE CRITICALITY ASSESSMENT

VALUE OF EXPORTS FOR SELECTED **COMMODITIES (2021): COMPARISON OF FOSSIL AND MINERAL RESOURCES**

transition: Critical materials, Int. Renewable

Energy Agency, Abu Dhabi

MOTIVATION FOR RESOURCE CRITICALITY ASSESSMENT

KEY GEOPOLITICAL RISKS TO THE SUPPLY OF MATERIALS

External shocks	Natural disasters, pandemics, wars, mine accidents, etc. Tax disputes, expropriation, foreign investment screening, etc.					
2 Resource nationalism						
3 Export restrictions	Export quotas, export taxes, obligatory minimum export prices, licensing, etc.					
4 Mineral cartels	Co-ordination of production, pricing, market allocation, etc.					
5 Political Instability and social unrest	Labour strikes, violence, corruption, etc.					
6 Market manipulation	Short squeezing, market cornering, spoofing, insider trading, etc.					

Source: IRENA (2023), Geopolitics of the energy transition: Critical materials, Int. Renewable Energy Agency, Abu Dhabi

This project has received funding from the Fuel Cells and Hydrogen 2 Joint Undertaking (now Clean Hydrogen Partnership) under Grant Agreement No 101007163. This Joint Undertaking receives support from the European Union's Horizon 2020 Research and Innovation program, Hydrogen Europe and Hydrogen Europe Research.

CRITICALITY ASSESSMENT OF HYDROGEN SYSTEMS

TABLE OF CONTENT

- 1. Introduction FZJ
- 2. Introduction of LCA and LCSA
- 3. Motivation for resource criticality assessment
- 4. Criticality in LCA
- 5. From the EU approach to an LCA impact Assessment
- 6. Case study
- 7. Summary
- 8. Start your own criticality assessment

CRITICALITY IN LCA

Source: Schrijvers D, Hool A, Blengini GA, et al. (2020) A review of methods and data to determine raw material criticality. Resources, Conservation and Recycling 155:104617.

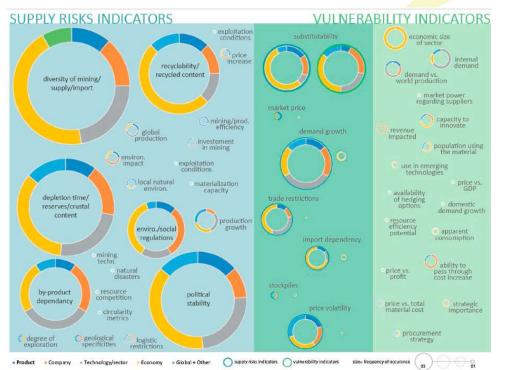
- Resource assessment ongoing discussion within LC(S)A community
- Confusion due to the ambiguity of terms such as scarcity, rarity, criticality, depletion
- Various methods for assessing criticality of raw materials within LCSA with different foci, scope of application, and criteria
 - EC's Critical Raw Material List
 - GeoPolRisk
 - ESSENZ
 - SCARCE
 - VDI approach
 - YALE approach
 - British Geology Survey (BGS)
 - Erdmann & Graedel 2011

This project has received funding from the Fuel Cells and Hydrogen 2 Joint Undertaking (now Clean Hydrogen Partnership) under Grant Agreement No 101007163. This Joint Undertaking receives support from the European Union's Horizon 2020 Research and Innovation program, Hydrogen Europe and Hydrogen Europe Research.

.

.

CRITICALITY IN LCA


VARIETY OF INDICATORS FOR ASSESSING CRITICALITY OF RAW MATERIALS

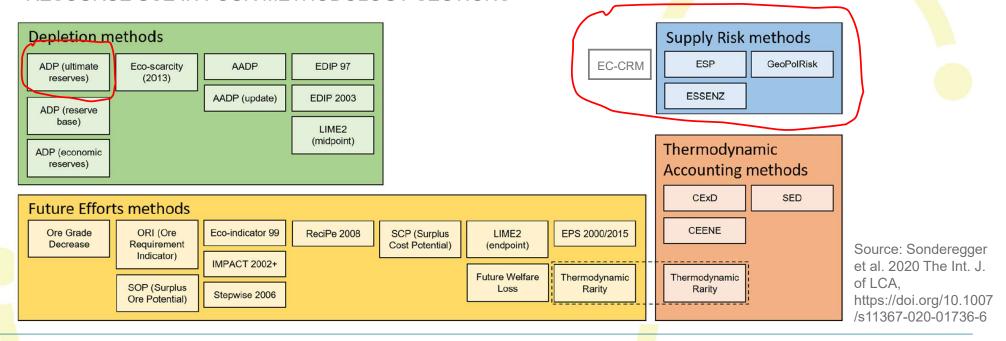
Supply risk

- Reserves
- Depletion time
- · Crustal content
- Global production
- By-product dependency
- Circularity
- Recyclability

Vulnerability

- Price
- Trade restrictions
- Substitutability
- Import dependency

Source: Schrijvers et al. 2020


This project has received funding from the Fuel Cells and Hydrogen 2 Joint Undertaking (now Clean Hydrogen Partnership) under Grant Agreement No 101007163. This Joint Undertaking receives support from the European Union's Horizon 2020 Research and Innovation program, Hydrogen Europe and Hydrogen Europe Research.

CRITICALITY IN LCA

LIFE CYCLE INITIATIVE: EXPERT TASK FORCE ON MINERAL RESOURCES

SCREENING OF VARIOUS METHODS FOR ASSESSING THE IMPACTS OF MINERAL RESOURCE USE IN FOUR METHODOLOGY SECTIONS

This project has received funding from the Fuel Cells and Hydrogen 2 Joint Undertaking (now Clean Hydrogen Partnership) under Grant Agreement No 101007163. This Joint Undertaking receives support from the European Union's Horizon 2020 Research and Innovation program, Hydrogen Europe and Hydrogen Europe Research.

CRITICALITY AND THE EU

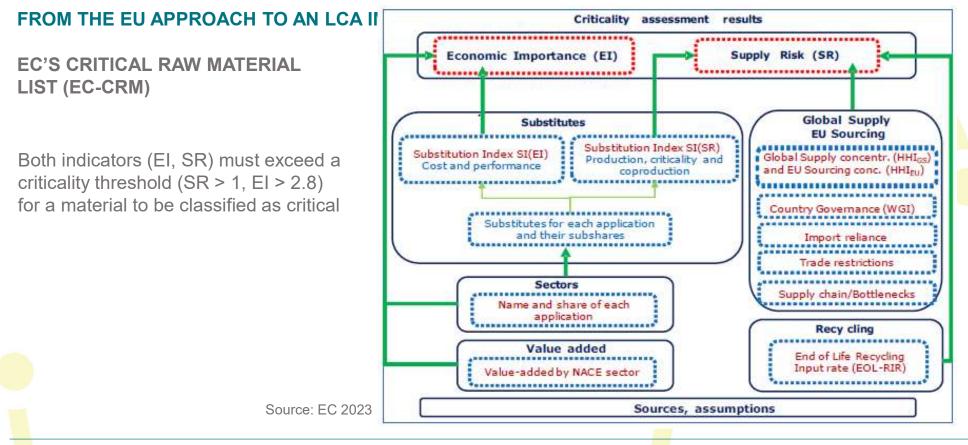
EC'S CRITICAL RAW MATERIAL LIST (EC-CRM)

Ongoing report by the EC with resulting list of CRM's is updated every three years (2011, 2014, 2017, 2020, 2023)

Critical Raw Materials Act (**CRMA**): Final approval for a strategy to secure a sustainable supply of critical raw materials (March 2024). Targets for covering the EU's own annual raw material requirements:

- min. 10% of ores and concentrates
- min. 40% refined products
- min. 25% from recycling from the EU
- max. 65% of the import volume of a raw material from a third country

CRITICALITY ASSESSMENT OF HYDROGEN SYSTEMS


TABLE OF CONTENT

- 1. Introduction FZJ
- 2. Introduction of LCA and LCSA
- 3. Motivation for resource criticality assessment
- 4. Criticality in LCA
- 5. From the EU approach to an LCA impact Assessment
- 6. Case study
- 7. Summary
- 8. Start your own criticality assessment

This project has received funding from the Fuel Cells and Hydrogen 2 Joint Undertaking (now Clean Hydrogen Partnership) under Grant Agreement No 101007163. This Joint Undertaking receives support from the European Union's Horizon 2020 Research and Innovation program, Hydrogen Europe and Hydrogen Europe Research.

FROM THE EU APPROACH TO AN LCA IMPACT ASSESSMENT

EC'S CRITICAL RAW MATERIAL LIST (EC-CRM)

Calculation of Supply Risk (SR) and Economic Importance (EI)

$$SR = \left[HHI_{gs} \cdot \frac{IR}{2} + HHI_{EUsourcing} \cdot \left(1 - \frac{IR}{2} \right) \right] \cdot (1 - EoL_{RIR}) \cdot SI_{SR}$$

- HHI Herfindahl-Hirschman Index
- WGI Worldwide Governance Indicator
- IR Import reliance
- EoL_{RIR} End-of-life recycling input rate
- SI Substitution index
- GS Global supply

$$EI = \sum_{a} (A_S \cdot Q_S) \cdot SI_{EI}$$

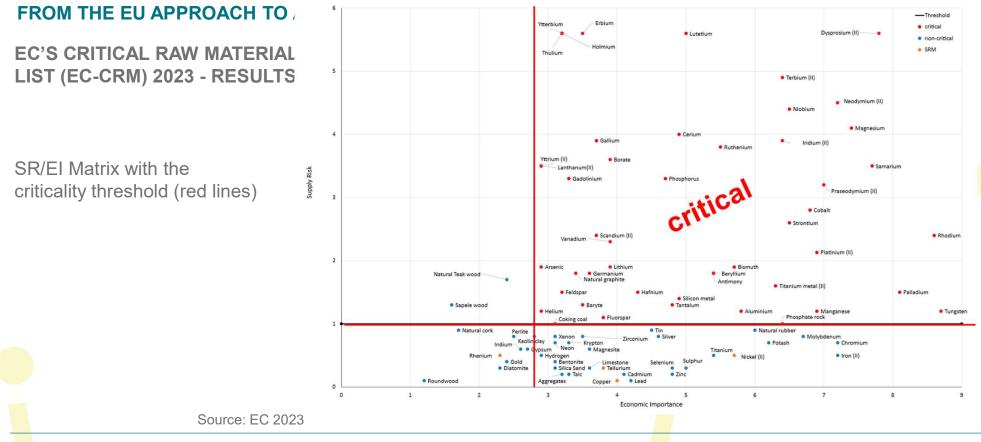
As Share of material end use in a NACE sector Qs NACE sector's value added SI Substitution index

FROM THE EU APPROACH TO AN LCA IMPACT ASSESSMENT

EC'S CRITICAL RAW MATERIAL LIST (EC-CRM)

Results of the 2023 EC-CRM list: 34 raw materials are considered as critical:

aluminium/bauxite	coking coal	lithium	phosphorus	
antimony	feldspar	LREE	scandium	
arsenic	fluorspar	magnesium	silicon metal	
baryte	gallium	manganese	strontium	
beryllium	germanium	natural graphite	tantalum	
bismuth	hafnium	niobium	titanium metal	
boron/borate	helium	PGM	tungsten	
cobalt	HREE	phosphate rock copper*	vanadium nickel*	


* Copper and Nickel do not meet the CRM thresholds, but are included as SRMs.

Source: EC 2023

This project has received funding from the Fuel Cells and Hydrogen 2 Joint Undertaking (now Clean Hydrogen Partnership) under Grant Agreement No 101007163. This Joint Undertaking receives support from the European Union's Horizon 2020 Research and Innovation program, Hydrogen Europe and Hydrogen Europe Research.

This project has received funding from the Fuel Cells and Hydrogen 2 Joint Undertaking (now Clean Hydrogen Partnership) under Grant Agreement No 101007163. This Joint Undertaking receives support from the European Union's Horizon 2020 Research and Innovation program, Hydrogen Europe and Hydrogen Europe Research.

FROM THE EU APPROACH TO AN LCA IMPACT ASSESSMENT

CALCULATION OF MATERIAL CRITICALITY

According to Life Cycle Impact Assessment logic, a **characterization factor (CF)** is multiplied by the quantities (mass (m)) of a considered resource (i) from the Life Cycle Inventory results:

Criticality =
$$\sum_{i=1}^{n} CF_i \cdot m_i$$

FROM THE EU APPROACH TO AN LCA IMPACT ASSESSMENT

CALCULATION OF OF THE CHARACTERIZATION FACTORS (CF)

New approach developed within SH₂E project

- Starting point: EC-CRM list
- consumption is included, since a high consumption poses a high risk if the EU relies heavily on imports, and it is not recycled within the EU

$CF = SR / (C * (1 - IR * (1 - EoL_{RIR})))$

SR Supply Risk (EC-CRM list 2023) ΕI Economic Importance (EC-CRM list 2023) С European Consumption of a material (EC Factsheet 2023 https://scrreen.eu/crms-2023/) IR Import Reliance (EC-CRM list 2023) End-of-life recycling input rate (EC-CRM list 2023) Eol

This project has received funding from the Fuel Cells and Hydrogen 2 Joint Undertaking (now Clean Hydrogen Partnership) under Grant Agreement No 101007163. This Joint Undertaking receives support from the European Union's Horizon 2020 Research and Innovation program, Hydrogen Europe and Hydrogen Europe Research.

FROM THE EU APPROACH TO AN LCA IMPACT ASSESSMENT

CALCULATION OF OF THE CHARACTERIZATION FACTORS (CF)

PHYSICAL AVAILABILITY

CF =

Abiotic depletion potential ADP

Extraction rate of resource i (kg/year)/Reserve² of resource i (kg)

Extraction rate of Antimony (kg/year)/Reserve² of Antimony (kg)

FROM THE EU APPROACH TO AN LCA IMPACT ASSESSMENT

CALCULATION OF OF THE CHARACTERIZATION FACTORS (CF)

GEOPOLITICAL APPROACH

GeoPolRisk methodology

- import-based indicator for the geopolitical supply risk of resources in LCSA
- method includes features similar to the EU assessment
- GeoPolRisk is at a country level, employing global shares

$$\mathbf{CF} = \left[\left(\sum_{k=1}^{n} s_k^2 \right) * \left(\sum_{k=1}^{n} g_k * f_{i,k} \right) \right] \begin{array}{c} \mathsf{SR} \\ \mathsf{s}_k \\ \mathsf{g}_k \\ \mathsf{F}_{i,k} \end{array}$$

Supply risk of country i concerning commodity c share of country k in global production of commodity c political instability indicator of country k (derived from WGI) Import share of country k in the supply chain of country i

FROM THE EU APPROACH TO AN LCA IMPACT ASSESSMENT

CALCULATION OF OF THE CHARACTERIZATION FACTORS (CF)

BINARY APPROACH USING EC-CRM

- combines supply risk (SR) and economic importance (EI)
- materials defined as 'critical' if $SR \ge 1$ and $EI \ge 2.8$
- output: list of CRMs, updated every 3 years, 34 CRM in 2023

CF = Mass of CRMs

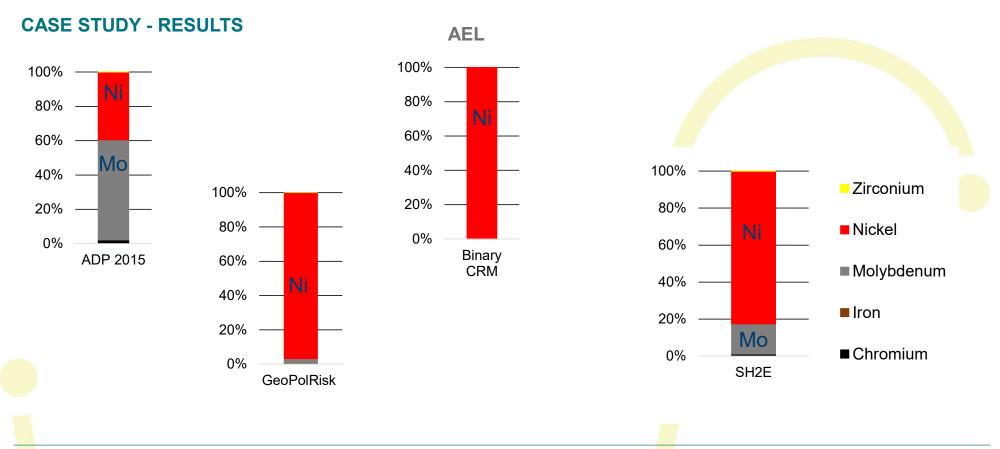
CRITICALITY ASSESSMENT OF HYDROGEN SYSTEMS

TABLE OF CONTENT

- 1. Introduction FZJ
- 2. Introduction of LCA and LCSA
- 3. Motivation for resource criticality assessment
- 4. Criticality in LCA
- 5. From the EU approach to an LCA impact Assessment
- 6. Case study
- 7. Summary
- 8. Start your own criticality assessment

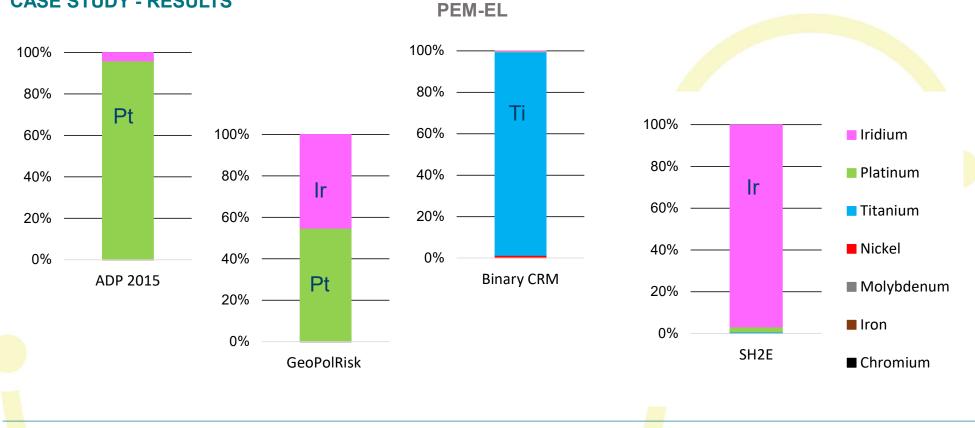
CASE STUDY

Manufacturing of 1 m² of cell area for alkaline water electrolysis (AEL), proton exchange membrane electrolysis (PEM-EL) and solid oxide electrolysis (SOEC)


Required materials for manufacturing of 1 m² cell area:

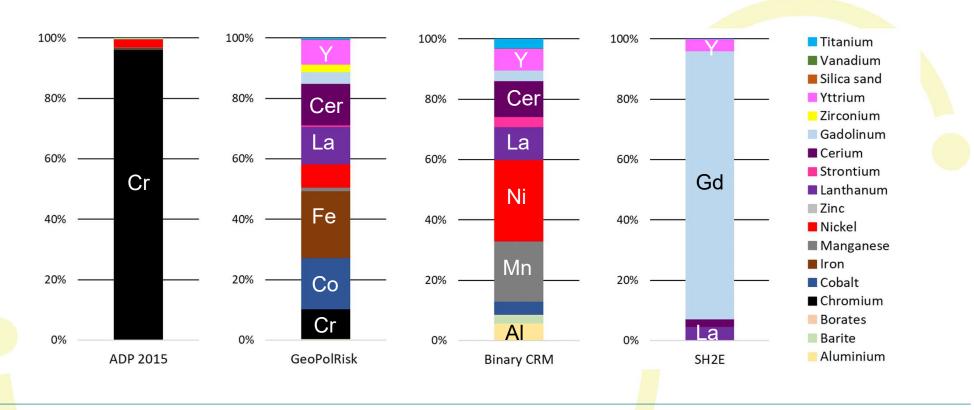
AEL	Mass, g	PEM-EL	Mass, g	SOEC	Mass, g
Nickel	6987	Titanium	9689	LSCF	72
Zirfon	122	Platinum	43	CGO	75
Polyphenylene sulfide	1944	Iridium	13	YSZ	283
Stainless steel	2328	Stainless steel	1185	Stainless steel	15,420
		Nafion	167	Glass ceramic	20
		Carbon paper	198	МСО	
		Rubber	21		
		Ink materials	202		

Source: Zhao G, Kraglund MR, Frandsen HL, Wulff AC, Jensen SH, Chen M, Graves CR (2020) Life cycle assessment of H2O electrolysis technologies. International Journal of Hydrogen Energy 45 (43):23765-23781



This project has received funding from the Fuel Cells and Hydrogen 2 Joint Undertaking (now Clean Hydrogen Partnership) under Grant Agreement No 101007163. This Joint Undertaking receives support from the European Union's Horizon 2020 Research and Innovation program, Hydrogen Europe and Hydrogen Europe Research.

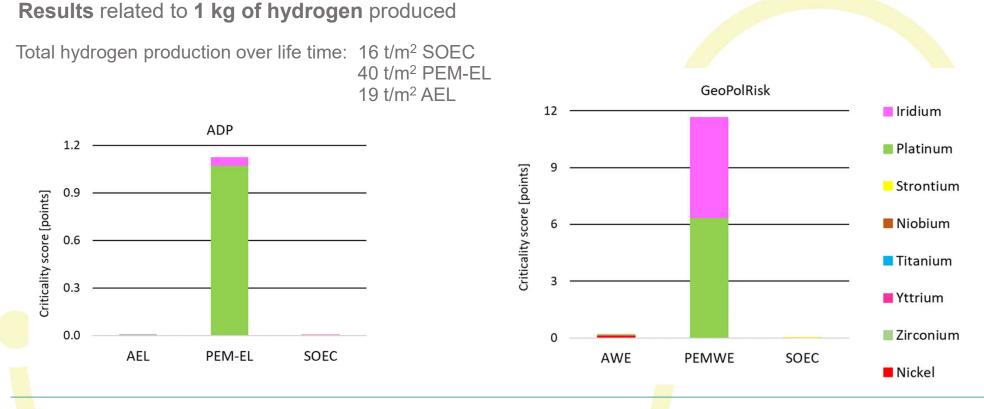
CASE STUDY - RESULTS



This project has received funding from the Fuel Cells and Hydrogen 2 Joint Undertaking (now Clean Hydrogen Partnership) under Grant Agreement No 101007163. This Joint Undertaking receives support from the European Union's Horizon 2020 Research and Innovation program, Hydrogen Europe and Hydrogen Europe Research.

CASE STUDY - RESULTS

SOEC

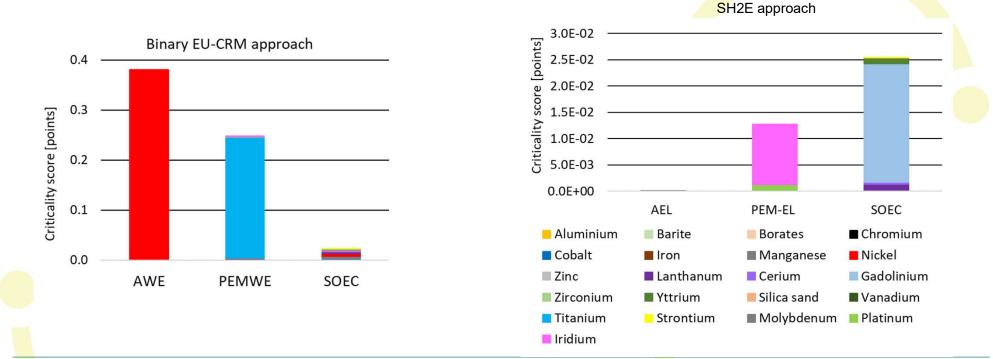

Co-funded by the European Union

This project has received funding from the Fuel Cells and Hydrogen 2 Joint Undertaking (now Clean Hydrogen Partnership) under Grant Agreement No 101007163. This Joint Undertaking receives support from the European Union's Horizon 2020 Research and Innovation program, Hydrogen Europe and Hydrogen Europe Research.

JÜLICH SH2E

SH2E Spring School (20-24 May 2024)

CASE STUDY



This project has received funding from the Fuel Cells and Hydrogen 2 Joint Undertaking (now Clean Hydrogen Partnership) under Grant Agreement No 101007163. This Joint Undertaking receives support from the European Union's Horizon 2020 Research and Innovation program, Hydrogen Europe and Hydrogen Europe Research.

CASE STUDY

Results related to 1 kg of hydrogen produced

This project has received funding from the Fuel Cells and Hydrogen 2 Joint Undertaking (now Clean Hydrogen Partnership) under Grant Agreement No 101007163. This Joint Undertaking receives support from the European Union's Horizon 2020 Research and Innovation program, Hydrogen Europe and Hydrogen Europe Research.

CRITICALITY ASSESSMENT OF HYDROGEN SYSTEMS

TABLE OF CONTENT

- 1. Introduction FZJ
- 2. Introduction of LCA and LCSA
- 3. Motivation for resource criticality assessment
- 4. Criticality in LCA
- 5. From the EU approach to an LCA impact Assessment
- 6. Case study
- 7. Summary
- 8. Start your own criticality assessment

SUMMARY

- different methods lead to different results
- Resource depletion methods (e.g. ADP) differ most from the criticality methods (e.g. GeoPolRisk, EC-CRM, SH2E)
- be cautious in drawing conclusions
- used several methods for final evaluation

START YOUR OWN CRITICALITY ASSESSMENT

Christina Wulf Forschungszentrum Jülich Institute of Energy and Climate Research – Jülich Systems Analysis C.wulf@fz-Juelich.de

