

eco-design Guidelines for Hydrogen Systems and Technologies

> eGHOST Spring School (20-24 May 2024) ECODESIGN WORKSHOP Agata HORWACIK (FHa) Jade GARCIA (SYMBIO France)

This project has received funding from the Fuel Cells and Hydrogen 2 Joint Undertaking (now Clean Hydrogen Partnership) under Grant Agreement No 101007166. This Joint Undertaking receives support from the European Union's Horizon 2020 Research and Innovation programme, Hydrogen Europe and Hydrogen Europe Research.

Co-funded by the European Unic

ECODESIGN WORKSHOP

TABLE OF CONTENT

- 1. INTRODUCTION
- 2. GOAL OF THE WORKSHOP
- 3. RESULTS FOR PEMFC AND SOEC
- 4. GROUP ACTIVITY
- 5. **RESULTS PRESENTATION & DISCUSSION**
- 6. CONCLUSION

1. INTRODUCTION

sh2e/eghost spring school

- Jade GARCIA jade.garcia@symbio.one
- LCA Project Manager at Symbio for 1,5 years
- 15 years of experience in Life Cycle Assessment and Eco-design
- Part of the eGHOST and SH2E projects:
 - **eGHOST**: provide data for the PEMFC, expertise to define the eco-design actions and write the eco-design guidelines for PEMFC
 - SH2E : provide data for the FCEV, conduct the LCA for the BEV in OpenLCA

- Agata HORWACIK ahorwacik@hidrogenoaragon.org
- Sustainability and Environment Coordinator at Consultancy and Training Dep. | Aragon Hydrogen Foundation since 2021
- Expertise in FCH technology and applications and Social Life Cycle Assessment
- FHa's contribution to the eGHOST and SH2E projects:
 - **eGHOST**: product concept with the initial design of PEMFC/SOEC, exploitation, communication and development of the roadmap towards standardization
 - **SH2E** : LCA inventory for the FC vehicle H2 production via electrolysis and SMR, exploitation tasks and development of the roadmap towards standardization

- Exploit the knowledge gained during the eGHOST/SH2E Spring School
- Work on a concrete LCA and eco-design case studies
- Reflect on the challenges of integrating eco-design actions
 for FCH technologies

eGHOST Spring (20-24 May 2024) How does it work?

- Create 5 teams
- Randomly choose 1 out of 5 proposed FCH technologies
- Work together to provide LCA objective and eco-design guidelines for the assigned technology (50min)
- Present the results (5 -10 min each team)

- A presentation card with short description for each technology and ecodesign template
- Relevant generic data on the impact of different materials, hydrogen types,
- You can use all media you want 😁!

In 5-10 min, shortly present the results of your study: proposition for the eco-design concept of the technology including:

- A presentation of the reference technology, the LCA application and the data to consider
- The eco-design choices
- The potential challenges to implement these actions
- The main difficulties that you have in the exercise

မ GHOST

3. RESULTS FOR PEMFC AND SOEC

The product : PEMFC

- Eco-design a Fuel Cell used in a light commercial vehicle
- Functional Unit : Provide 48 kW to an electric LCV for 15 years and 225 000km.

The scope and the data needed

PEMFC ecodesign : MATERIALS & MANUFACTURING T

Ecodesign actions	Challenges, limits
Use recycled platinum, first from autocatalyst and jewelry recycling and in medium/long term, from Fuel Cell recycling	Work with suppliers to get more recycled platinum and to have certificates for it.
Reduce/optimize the quantity of Platinum used (loading)	Without increasing the hydrogen consumption in use.
Use recycled metals for other parts: aluminum (carter), stainless steel (BPP) and copper (collector and bus bar)	It could be difficult for security parts (carter) or for very thin components (BPP : around 80 μm)
Reduce/optimize the amount of fluorinated polymer component in the MEA	All components of the MEA are linked : platinum, carbon, membrane and ionomer
Optimize the cutting patterns of the membrane to decrease the scrap in the process	Adapt the design to the roll dimension or the roll to the design

eGHOST Spring (20-24 May 2024) PEMFCC ecodesign : USE

Ecodesign actions	Challenges, limits
Use low carbon Hydrogen	Low carbon is not yet available in high volumes. The deployment depend on the global policies and the users of the products.
Use components with the same lifetime than the product → no need to replace them	
Facilitate the accessibility of the FC in the vehicle for the maintenance.	Need exchanges with the car manufacturer and the garage responsible of the maintenance

PEMFC ecodesign : END OF LIFE

Ecodesign actions	Challenges, limits
Ensure that the FC will be collected in the End of Life → organise the collection chain	Need exchanges with the car manufacturers and the recyclers centers
Facilitate the recovering of the Platinum (higher value) in designing the stack and the MEA	Find a compromise between performance and dismantling
Facilitate and optimize the dismantling processes in using screws instead of welding (non destructive dismantling)	Manage the risks during the use as vibrations or bumps.
Develop more eco-friendly recycling scenarios → avoid pyrolysis that create HF acids and consumes lots of energy	Medium TRL and need to be less expensive than the value recovered to develop
Reuse some components after eventual remanufacturing	Mechanical and thermal properties have to be checked. The design of these component must remain the same in time!

The product : SOEC

LIFE CYCLE OF A SOLID OXIDE ELECTROLYZER

SOEC eco-design : MATERIALS & MANUFACTURING

Medium term eco-design actions (feasible within 3 to 10 years) Medium to long-term eco-design actions (feasibility > 10 years)

01 - MATERIALS		
1.1 Selection of low impact materials		
Selection of clean materials	Choose materials with low energy content for stack manufacturing with equivalent or better performance	
	 Choose materials with low toxicity for human health and environment for stack manufacturing (use environmental databases for materials selection) with equivalent or better performance 	
Selection of renewable and sustainable materials	 Use innovative doping strategy for the catalysts on cells to reduce the amount of rare earth elements (REE) in the stack 	
	 Reduce the use of nickel in stack components to prevent environmental impacts such as acidification 	
Selection of materials with low energy content	Integrate innovation in the choice of electrolyte materials to reduce the amount of rare earth elements materials	
Integration of recycled materials	 Use recycled steel for components in the stacks, modules, systems 	
Integration of recyclable materials	Make architecture of the stack easy to disassembled for recyclability without compromising the sealing of the stack (especially : improve the reusability of end plates which represent an important part of the weight and metal content of the stack)	

SOEC eco-design : MATERIALS & MANUFACTURING

02 - MANUFACTURING			
2.1 Optimization of manufacturing techniques			
Reduce the number of production steps	 Optimize number of manufacturing steps to reduce production costs (e.g. "co-sintering" of cell layers as this process step is the most energy consuming) 		
Reduce the energy consumption in production	 Use less energy on production lines (especially on cell sintering step which is energy consuming) to reduce environmental impacts and costs. Optimize time and temperature. Use cleaner or renewable energy on production lines (especially on cell sintering step which is energy consuming) 		
	 Revalorize thermal losses in production steps to reduce environmental impacts and costs Revalorize H2 produced during the final conditioning test to produce electricity or heat 		
Limit and reduce production wastes	 Integrate internal recycling loops for production wastes as much as possible (for steel in priority, then for rare earth elements and critical materials) to reduce environmental impacts and costs Optimize production techniques to reduce material losses (e.g. important use of materials conditioned in coil and involving important quantity of offcuts: work with supplier to provide the good width to reduce losses – work on a recycling process to reinject these offcuts in production.) 		
Reduce consumables in production and use clean consumables	 Reduce/optimize the amount of chemicals and solvents used in all production steps Select water based solvent instead of organic solvents in production steps (colloidal processing based on water instead of organic solvents) 		

SOEC eco-design : OPERATION

eGHOST

04 - OPERA	TION	
4.1 Reduction of in	npact during use	
Reduce energy consumption in use	 Optimize the Balance of Plant (BoP) to reduce the overall energy consumption (e.g. To heat up only active materials and not structural elements such as the end plates) 	
	 Reduce operating temperature of the system, to reduce energy consumption 	
	Optimize cell performance	
	 Use H2 management system (HMS) to optimize the system in term of performance and durability according to the demand. 	
	 Find good compromise between performance and durability (part of the HMS function) 	
Use clean energy and consumable sources	 Supply the system with renewable electricity to lower environmental impacts in use 	
for operation	 Produce low impact steam to run the system (use steam from steam networks) 	
Use less consumables and materials for operation	 Use water recirculation to reduce overall water consumption (in particular the condensate of H2 purification step.) 	
4.2 Optimization of product lifetime		
Improve the reliability and durability of the	 Develop harmonized protocols/recommendations to start/operate the system 	
system	Reduce operating temperature of the system, to limit stack degradation, while maintaining good contacts within the stack. The optimization of temperatures with the hot box inside the different zones of the stacks could limit stack degradation.	
	Reduce cell degradation	
Ensure easy maintenance and repair	Make cells replacement feasible in the stack	
Provide a modular structure for the system	Improve stack modularity to optimize part load operation and limit degradation	
Standardize reparation and maintenance procedures	 Develop harmonized standards to measure stack degradation 	

G eGHOST

SOEC eco-design : END OF LIFE

05 - END C	OF LIFE
Integrate possibility of reuse of components, products	Develop processes and protocols to facilitate the reuse/remanufacturing of steel components (end plates, interconnects, module and BoP components) – in particular offcuts
Possibility for remanufacturing / refurbishing of the components	 Develop automated and industrialized processes for efficient stack dismantling (mechanical disassembly techniques) Today components of the stacks are glued using glass seal that makes mechanical dismantling very difficult. Find new technic of sealing without compromising gasproofness (e.g. inclusion of the stack in a box) Design for modularity and disassembly at end of life
Possibility of recycling	 Develop recycling streams and processes for SOEC materials (find ways to disassemble the stack, and recycling processes for valuable materials in the stack). Envisage hydrometallurgy processes for critical raw materials recovery. Reuse of terminal plates developed in "material part" Use existing recycling streams for steel recovery Improve the recyclability of steels Improve the total recycling rate of SOEC systems
Safe incineration if no possibility for recycling	Ensure safe incineration of the components if recycling is not possible

မ GHOST

eGHOST

eco-design Guidelines for Hydrogen Systems and Technologies

Thank you for your attention!

jade.garcia@symbio.one ahorwacik@hidrogenoaragon.org

This project has received funding from the Fuel Cells and Hydrogen 2 Joint Undertaking (now Clean Hydrogen Partnership) under Grant Agreement No 101007166. This Joint Undertaking receives support from the European Union's Horizon 2020 Research and Innovation programme, Hydrogen Europe and Hydrogen Europe Research.

Co-funded by the European Unio